These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 17966464)

  • 41. Genetic relationships among Rehmannia glutinosa cultivars and varieties.
    Qi J; Li X; Song J; Eneji AE; Ma X
    Planta Med; 2008 Dec; 74(15):1846-52. PubMed ID: 19016403
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR.
    Hodkinson TR; Chase MW; Renvoize SA
    Ann Bot; 2002 May; 89(5):627-36. PubMed ID: 12099538
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assessment of genetic relationship among Rhododendron cultivars using amplified fragment length polymorphism and inter-simple sequence repeat markers.
    Xu JJ; Zhao B; Shen HF; Huang WM; Yuan LX
    Genet Mol Res; 2016 Aug; 15(3):. PubMed ID: 27706588
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopersicon esculentum L.).
    Park YH; West MA; St Clair DA
    Genome; 2004 Jun; 47(3):510-8. PubMed ID: 15190368
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genetic relationship of Curcuma species from Northeast India using PCR-based markers.
    Das A; Kesari V; Satyanarayana VM; Parida A; Rangan L
    Mol Biotechnol; 2011 Sep; 49(1):65-76. PubMed ID: 21253894
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assessment of genetic diversity of bermudagrass germplasm from southwest China and Africa by using AFLP markers.
    Ling Y; Huang LK; Zhang XQ; Ma X; Liu W; Chen SY; Yan HD
    Genet Mol Res; 2015 Mar; 14(1):1748-56. PubMed ID: 25867318
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genetic diversity and relationships among Chinese Eucommia ulmoides cultivars revealed by sequence-related amplified polymorphism, amplified fragment length polymorphism, and inter-simple sequence repeat markers.
    Li Y; Wang SH; Li ZQ; Jin CF; Liu MH
    Genet Mol Res; 2014 Oct; 13(4):8704-13. PubMed ID: 25366761
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [AFLP analysis for genetic diversity of Ganoderma].
    Zheng LY; Jia DH; Luo X; Yang ZR
    Zhongguo Zhong Yao Za Zhi; 2007 Sep; 32(17):1733-6. PubMed ID: 17992987
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative assessment of genetic diversity of peanut (Arachis hypogaea L.) genotypes with various levels of resistance to bacterial wilt through SSR and AFLP analyses.
    Jiang H; Liao B; Ren X; Lei Y; Mace E; Fu T; Crouch JH
    J Genet Genomics; 2007 Jun; 34(6):544-54. PubMed ID: 17601614
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [AFLP analysis on genetic diversity of wild Dactylis glomerata L. germplasm resources].
    Peng Y; Zhang XQ; Liu JP; Yi YJ
    Yi Chuan; 2006 Jul; 28(7):845-50. PubMed ID: 16825173
    [TBL] [Abstract][Full Text] [Related]  

  • 51. AFLP analysis of genetic variability in New Guinea impatiens.
    Carr J; Xu M; Dudley JW; Korban SS
    Theor Appl Genet; 2003 May; 106(8):1509-16. PubMed ID: 12750794
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Detection of genomic changes in transgenic Bt rice populations through genetic fingerprinting using amplified fragment length polymorphism (AFLP).
    Chandel G; Datta K; Datta SK
    GM Crops; 2010; 1(5):327-36. PubMed ID: 21844690
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane ( Saccharum spp.).
    Lima ML; Garcia AA; Oliveira KM; Matsuoka S; Arizono H; De Souza CL; De Souza AP
    Theor Appl Genet; 2002 Jan; 104(1):30-8. PubMed ID: 12579425
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assessment of genetic diversity in 31 species of mangroves and their associates through RAPD and AFLP markers.
    Mukherjee AK; Acharya L; Panda PC; Mohapatra T; Das P
    Z Naturforsch C J Biosci; 2006; 61(5-6):413-20. PubMed ID: 16869501
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assessing Date Palm Genetic Diversity Using Different Molecular Markers.
    Atia MAM; Sakr MM; Adawy SS
    Methods Mol Biol; 2017; 1638():125-142. PubMed ID: 28755220
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Establishment of fluorescent amplified fragment length polymorphism in Vibrio cholerae and evaluation in molecular typing].
    Lou J; Diao BW; Wang HX; Cui ZG; Qi GM; Kan B
    Zhonghua Liu Xing Bing Xue Za Zhi; 2007 Jun; 28(6):580-5. PubMed ID: 17939389
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assessment of genetic diversity in Chinese eared pheasant using fluorescent-AFLP markers.
    Li X; Zhu Y; Liu P; Zhuge Z; Su G; Wang J
    Mol Phylogenet Evol; 2010 Oct; 57(1):429-33. PubMed ID: 20595068
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effectiveness of AFLPs and retrotransposon-based markers for the identification of Portuguese grapevine cultivars and clones.
    Castro I; D'Onofrio C; Martín JP; Ortiz JM; De Lorenzis G; Ferreira V; Pinto-Carnide O
    Mol Biotechnol; 2012 Sep; 52(1):26-39. PubMed ID: 22081367
    [TBL] [Abstract][Full Text] [Related]  

  • 59. RFLP and AFLP analysis of inter- and intraspecific variation of Brassica rapa and B. napus shows that B. rapa is an important genetic resource for B. napus improvement.
    Liu RH; Meng JL
    Yi Chuan Xue Bao; 2006 Sep; 33(9):814-23. PubMed ID: 16980128
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular characterization of mulberry (Morus spp.) genotypes via RAPD and ISSR.
    İpek M; Pirlak L; Kafkas S
    J Sci Food Agric; 2012 Jun; 92(8):1633-7. PubMed ID: 22222844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.