These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 17966504)

  • 41. Measurement of Cu and Zn adsorption onto surficial sediment components: new evidence for less importance of clay minerals.
    Wang X; Li Y
    J Hazard Mater; 2011 May; 189(3):719-23. PubMed ID: 21466918
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Isolation and effects on green alga Chlorella pyrenoidosa of algal-inhibiting allelochemicals in the macrophyte, Phragmites communis Tris].
    Li FM; Hu HY
    Huan Jing Ke Xue; 2004 Sep; 25(5):89-92. PubMed ID: 15623030
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of fluoride and chloride on the growth of Chlorella pyrenoidosa.
    Li Q; Wu YY; Wu YD
    Water Sci Technol; 2013; 68(3):722-7. PubMed ID: 23925203
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of tetrabromobisphenol A on the green alga Chlorella pyrenoidosa.
    Liu H; Yu Y; Kong F; He L; Yu H; Giesy JP; Wang X
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Sep; 43(11):1271-8. PubMed ID: 18642150
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Toxicity assessment of Chlorella vulgaris and Chlorella protothecoides following exposure to Pb(II).
    Zhang W; Xiong B; Chen L; Lin K; Cui X; Bi H; Guo M; Wang W
    Environ Toxicol Pharmacol; 2013 Jul; 36(1):51-7. PubMed ID: 23557673
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Effect of Cr (VI) anions on the Cu (II) adsorption behavior of two kinds of clay minerals in single and binary solution].
    Liu JJ; Liang DL; Wu XL; Qu GZ; Qian X
    Huan Jing Ke Xue; 2014 Jan; 35(1):254-62. PubMed ID: 24720213
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of nutrient conditions on the toxicity of naphthalene to Chlorella pyrenoidosa.
    Kong Q; Zhu L; Shen X
    J Environ Sci (China); 2011; 23(2):307-14. PubMed ID: 21517006
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Toxicological evaluation of clay minerals and derived nanocomposites: a review.
    Maisanaba S; Pichardo S; Puerto M; Gutiérrez-Praena D; Cameán AM; Jos A
    Environ Res; 2015 Apr; 138():233-54. PubMed ID: 25732897
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differences in bioaccumulation of Ni and Zn by microalgae in the presence of fulvic acid.
    Zhang G; Yang B; Shao L; Li F; Leng Y; Chen X
    Chemosphere; 2022 Mar; 291(Pt 2):132838. PubMed ID: 34762892
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Responses of unicellular alga Chlorella pyrenoidosa to allelochemical linoleic acid.
    Qian H; Xu J; Lu T; Zhang Q; Qu Q; Yang Z; Pan X
    Sci Total Environ; 2018 Jun; 625():1415-1422. PubMed ID: 29996438
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of straw leachates from Cry1Ca-expressing transgenic rice on the growth of Chlorella pyrenoidosa.
    Wang J; Chen X; Li Y; Zhu H; Ding J; Peng Y
    Environ Toxicol Chem; 2014 May; 33(5):1156-62. PubMed ID: 24478192
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enantioselective toxic effects and environmental behavior of ethiprole and its metabolites against Chlorella pyrenoidosa.
    Gao J; Wang F; Wang P; Jiang W; Zhang Z; Liu D; Zhou Z
    Environ Pollut; 2019 Jan; 244():757-765. PubMed ID: 30388679
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adsorption behavior of toxic tributyltin to clay-rich sediments under various environmental conditions.
    Hoch M; Alonso-Azcarate J; Lischick M
    Environ Toxicol Chem; 2002 Jul; 21(7):1390-7. PubMed ID: 12109738
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Desorption of ciprofloxacin from clay mineral surfaces.
    Wu Q; Li Z; Hong H; Li R; Jiang WT
    Water Res; 2013 Jan; 47(1):259-68. PubMed ID: 23123088
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Effects of allelochemicals ethyl cinnamate on the growth and physiological characteristics of Chlorella pyrenoidosa].
    Gao LL; Guo PY; Su GM; Wei YF
    Huan Jing Ke Xue; 2013 Jan; 34(1):156-62. PubMed ID: 23487932
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adsorption, desorption and activities of acid phosphatase on various colloidal particles from an Ultisol.
    Huang Q; Liang W; Cai P
    Colloids Surf B Biointerfaces; 2005 Nov; 45(3-4):209-14. PubMed ID: 16198547
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biodegradation and removal of 3,4-dichloroaniline by Chlorella pyrenoidosa based on liquid chromatography-electrospray ionization-mass spectrometry.
    Wang S; Poon K; Cai Z
    Environ Sci Pollut Res Int; 2013 Jan; 20(1):552-7. PubMed ID: 22669566
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metal toxicity to Chlorella pyrenoidosa assessed by a short-term continuous test.
    Lin KC; Lee YL; Chen CY
    J Hazard Mater; 2007 Apr; 142(1-2):236-41. PubMed ID: 16971040
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of iron oxide coatings on zinc sorption mechanisms at the clay-mineral/water interface.
    Nachtegaal M; Sparks DL
    J Colloid Interface Sci; 2004 Aug; 276(1):13-23. PubMed ID: 15219425
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effects of continuous and pulsed exposures of suspended clay on the survival, growth, and reproduction of Daphnia magna.
    Robinson SE; Capper NA; Klaine SJ
    Environ Toxicol Chem; 2010 Jan; 29(1):168-75. PubMed ID: 20821432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.