These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 17967012)
1. Spectroscopic properties of colloidal indium phosphide quantum wires. Wang F; Yu H; Li J; Hang Q; Zemlyanov D; Gibbons PC; Wang LW; Janes DB; Buhro WE J Am Chem Soc; 2007 Nov; 129(46):14327-35. PubMed ID: 17967012 [TBL] [Abstract][Full Text] [Related]
2. Determination of the rod-wire transition length in colloidal indium phosphide quantum rods. Wang F; Buhro WE J Am Chem Soc; 2007 Nov; 129(46):14381-7. PubMed ID: 17967017 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of cadmium telluride quantum wires and the similarity of their effective band gaps to those of equidiameter cadmium telluride quantum dots. Sun J; Wang LW; Buhro WE J Am Chem Soc; 2008 Jun; 130(25):7997-8005. PubMed ID: 18507463 [TBL] [Abstract][Full Text] [Related]
4. Increase of the photoluminescence intensity of InP nanowires by photoassisted surface passivation. van Vugt LK; Veen SJ; Bakkers EP; Roest AL; Vanmaekelbergh D J Am Chem Soc; 2005 Sep; 127(35):12357-62. PubMed ID: 16131216 [TBL] [Abstract][Full Text] [Related]
5. Two- versus three-dimensional quantum confinement in indium phosphide wires and dots. Yu H; Li J; Loomis RA; Wang LW; Buhro WE Nat Mater; 2003 Aug; 2(8):517-20. PubMed ID: 12872161 [TBL] [Abstract][Full Text] [Related]
6. Colloidal GaAs quantum wires: solution-liquid-solid synthesis and quantum-confinement studies. Dong A; Yu H; Wang F; Buhro WE J Am Chem Soc; 2008 May; 130(18):5954-61. PubMed ID: 18393420 [TBL] [Abstract][Full Text] [Related]
7. Cadmium selenide quantum wires and the transition from 3D to 2D confinement. Yu H; Li J; Loomis RA; Gibbons PC; Wang LW; Buhro WE J Am Chem Soc; 2003 Dec; 125(52):16168-9. PubMed ID: 14692740 [TBL] [Abstract][Full Text] [Related]
8. Growth of InP nanostructures via reaction of indium droplets with phosphide ions: synthesis of InP quantum rods and InP-TiO2 composites. Nedeljković JM; Mićić OI; Ahrenkiel SP; Miedaner A; Nozik AJ J Am Chem Soc; 2004 Mar; 126(8):2632-9. PubMed ID: 14982473 [TBL] [Abstract][Full Text] [Related]
9. The effect of nanocrystal surface structure on the luminescence properties: photoemission study of HF-etched InP nanocrystals. Adam S; Talapin DV; Borchert H; Lobo A; McGinley C; de Castro AR; Haase M; Weller H; Möller T J Chem Phys; 2005 Aug; 123(8):084706. PubMed ID: 16164320 [TBL] [Abstract][Full Text] [Related]
10. The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core-shell quantum dots. Narayanaswamy A; Feiner LF; Meijerink A; van der Zaag PJ ACS Nano; 2009 Sep; 3(9):2539-46. PubMed ID: 19681583 [TBL] [Abstract][Full Text] [Related]
11. Free standing luminescent silicon quantum dots: evidence of quantum confinement and defect related transitions. Ray M; Hossain SM; Klie RF; Banerjee K; Ghosh S Nanotechnology; 2010 Dec; 21(50):505602. PubMed ID: 21098931 [TBL] [Abstract][Full Text] [Related]
12. Electron and hole transfer from indium phosphide quantum dots. Blackburn JL; Selmarten DC; Ellingson RJ; Jones M; Micic O; Nozik AJ J Phys Chem B; 2005 Feb; 109(7):2625-31. PubMed ID: 16851267 [TBL] [Abstract][Full Text] [Related]
13. Fabrication, spectroscopy, and dynamics of highly luminescent core-shell InP@ZnSe quantum dots. Kim MR; Chung JH; Lee M; Lee S; Jang DJ J Colloid Interface Sci; 2010 Oct; 350(1):5-9. PubMed ID: 20619850 [TBL] [Abstract][Full Text] [Related]
14. Time-resolved photoluminescence spectra of Si species encapsulated in zeolite supercages. Tanaka K; Komatsu Y; Choo CK J Phys Chem B; 2005 Jan; 109(2):736-42. PubMed ID: 16866435 [TBL] [Abstract][Full Text] [Related]
15. Theory of alkyl-terminated silicon quantum dots. Reboredo FA; Galli G J Phys Chem B; 2005 Jan; 109(3):1072-8. PubMed ID: 16851062 [TBL] [Abstract][Full Text] [Related]
16. Surface passivation of luminescent colloidal quantum dots with poly(dimethylaminoethyl methacrylate) through a ligand exchange process. Wang XS; Dykstra TE; Salvador MR; Manners I; Scholes GD; Winnik MA J Am Chem Soc; 2004 Jun; 126(25):7784-5. PubMed ID: 15212519 [TBL] [Abstract][Full Text] [Related]
17. Trap Passivation in Indium-Based Quantum Dots through Surface Fluorination: Mechanism and Applications. Kim TG; Zherebetskyy D; Bekenstein Y; Oh MH; Wang LW; Jang E; Alivisatos AP ACS Nano; 2018 Nov; 12(11):11529-11540. PubMed ID: 30335943 [TBL] [Abstract][Full Text] [Related]
18. Zinc Carboxylate Surface Passivation for Enhanced Optical Properties of In(Zn)P Colloidal Quantum Dots. Yoo D; Bak E; Ju HM; Shin YM; Choi MJ Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296128 [TBL] [Abstract][Full Text] [Related]
19. Halide-Amine Co-Passivated Indium Phosphide Colloidal Quantum Dots in Tetrahedral Shape. Kim K; Yoo D; Choi H; Tamang S; Ko JH; Kim S; Kim YH; Jeong S Angew Chem Int Ed Engl; 2016 Mar; 55(11):3714-8. PubMed ID: 26849683 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and photoluminescence of ZnS quantum dots. Wang YH; Chen Z; Zhou XQ J Nanosci Nanotechnol; 2008 Mar; 8(3):1312-5. PubMed ID: 18468145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]