These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 17967017)

  • 21. Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles.
    Hyun BR; Zhong YW; Bartnik AC; Sun L; Abruña HD; Wise FW; Goodreau JD; Matthews JR; Leslie TM; Borrelli NF
    ACS Nano; 2008 Nov; 2(11):2206-12. PubMed ID: 19206384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core-shell quantum dots.
    Narayanaswamy A; Feiner LF; Meijerink A; van der Zaag PJ
    ACS Nano; 2009 Sep; 3(9):2539-46. PubMed ID: 19681583
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quenching of semiconductor quantum dot photoluminescence by a pi-conjugated polymer.
    Selmarten D; Jones M; Rumbles G; Yu P; Nedeljkovic J; Shaheen S
    J Phys Chem B; 2005 Aug; 109(33):15927-32. PubMed ID: 16853021
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Absorption cross-section and related optical properties of colloidal InAs quantum dots.
    Yu P; Beard MC; Ellingson RJ; Ferrere S; Curtis C; Drexler J; Luiszer F; Nozik AJ
    J Phys Chem B; 2005 Apr; 109(15):7084-7. PubMed ID: 16851806
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shape control of III-V semiconductor nanocrystals: synthesis and properties of InAs quantum rods.
    Kan S; Aharoni A; Mokari T; Banin U
    Faraday Discuss; 2004; 125():23-38; discussion 99-116. PubMed ID: 14750662
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thiols passivate recombination centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency.
    Barkhouse DA; Pattantyus-Abraham AG; Levina L; Sargent EH
    ACS Nano; 2008 Nov; 2(11):2356-62. PubMed ID: 19206403
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermally activated photoluminescence in lead selenide colloidal quantum dots.
    Kigel A; Brumer M; Maikov GI; Sashchiuk A; Lifshitz E
    Small; 2009 Jul; 5(14):1675-81. PubMed ID: 19347855
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Colloidal quantum-dot photodetectors exploiting multiexciton generation.
    Sukhovatkin V; Hinds S; Brzozowski L; Sargent EH
    Science; 2009 Jun; 324(5934):1542-4. PubMed ID: 19541992
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectroscopy of shallow InAs/InP quantum wire nanostructures.
    Mazur YI; Dorogan VG; Bierwagen O; Tarasov GG; DeCuir EA; Noda S; Zhuchenko ZY; Manasreh MO; Masselink WT; Salamo GJ
    Nanotechnology; 2009 Feb; 20(6):065401. PubMed ID: 19417384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of high aspect ratio quantum-size CdS nanorods and their surface-dependent photoluminescence.
    Saunders AE; Ghezelbash A; Sood P; Korgel BA
    Langmuir; 2008 Aug; 24(16):9043-9. PubMed ID: 18616312
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface chemistry of InP quantum dots: a comprehensive study.
    Cros-Gagneux A; Delpech F; Nayral C; Cornejo A; Coppel Y; Chaudret B
    J Am Chem Soc; 2010 Dec; 132(51):18147-57. PubMed ID: 21126088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of ordered ultrathin ZnO nanowire bundles on an indium-tin oxide substrate.
    Fang F; Zhao D; Shen D; Zhang J; Li B
    Inorg Chem; 2008 Jan; 47(2):398-400. PubMed ID: 18095676
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-dimensional colloidal metal chalcogenides semiconductors: synthesis, spectroscopy, and applications.
    Lhuillier E; Pedetti S; Ithurria S; Nadal B; Heuclin H; Dubertret B
    Acc Chem Res; 2015 Jan; 48(1):22-30. PubMed ID: 25554861
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Length-dependent change of optical, magnetic, and vibrational properties of vanadate (V(IV)O3(2-)) quantum wire embedded in AM-6 vanadosilicate.
    Datta SJ; Yoon KB
    J Am Chem Soc; 2012 Oct; 134(41):17202-11. PubMed ID: 23009119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of band structure parameters and the quasi-particle gap of CdSe quantum dots by cyclic voltammetry.
    Inamdar SN; Ingole PP; Haram SK
    Chemphyschem; 2008 Dec; 9(17):2574-9. PubMed ID: 18956405
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strong electronic coupling in two-dimensional assemblies of colloidal PbSe quantum dots.
    Williams KJ; Tisdale WA; Leschkies KS; Haugstad G; Norris DJ; Aydil ES; Zhu XY
    ACS Nano; 2009 Jun; 3(6):1532-8. PubMed ID: 19456114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation of nanogaps in InAs nanowires by selectively etching embedded InP segments.
    Schukfeh MI; Storm K; Hansen A; Thelander C; Hinze P; Beyer A; Weimann T; Samuelson L; Tornow M
    Nanotechnology; 2014 Nov; 25(46):465306. PubMed ID: 25360747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple dot-in-rod PbS/CdS heterostructures with high photoluminescence quantum yield in the near-infrared.
    Justo Y; Goris B; Kamal JS; Geiregat P; Bals S; Hens Z
    J Am Chem Soc; 2012 Mar; 134(12):5484-7. PubMed ID: 22420898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires.
    Wang J; Gudiksen MS; Duan X; Cui Y; Lieber CM
    Science; 2001 Aug; 293(5534):1455-7. PubMed ID: 11520977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrostatic Stabilized InP Colloidal Quantum Dots with High Photoluminescence Efficiency.
    Mnoyan AN; Kirakosyan AG; Kim H; Jang HS; Jeon DY
    Langmuir; 2015 Jun; 31(25):7117-21. PubMed ID: 26043065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.