These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 17967049)

  • 1. Evolutionary models for formation of network motifs and modularity in the Saccharomyces transcription factor network.
    Ward JJ; Thornton JM
    PLoS Comput Biol; 2007 Oct; 3(10):1993-2002. PubMed ID: 17967049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network motif-based analysis of regulatory patterns in paralogous gene pairs.
    Melkus G; Rucevskis P; Celms E; Čerāns K; Freivalds K; Kikusts P; Lace L; Opmanis M; Rituma D; Viksna J
    J Bioinform Comput Biol; 2020 Jun; 18(3):2040008. PubMed ID: 32698721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network topology and the evolution of dynamics in an artificial genetic regulatory network model created by whole genome duplication and divergence.
    Dwight Kuo P; Banzhaf W; Leier A
    Biosystems; 2006 Sep; 85(3):177-200. PubMed ID: 16650928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional regulatory networks in Saccharomyces cerevisiae.
    Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA
    Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene regulatory network growth by duplication.
    Teichmann SA; Babu MM
    Nat Genet; 2004 May; 36(5):492-6. PubMed ID: 15107850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach.
    Ma HW; Buer J; Zeng AP
    BMC Bioinformatics; 2004 Dec; 5():199. PubMed ID: 15603590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolutionary dynamics of the Saccharomyces cerevisiae protein interaction network after duplication.
    Presser A; Elowitz MB; Kellis M; Kishony R
    Proc Natl Acad Sci U S A; 2008 Jan; 105(3):950-4. PubMed ID: 18199840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Duplication of a promiscuous transcription factor drives the emergence of a new regulatory network.
    Pougach K; Voet A; Kondrashov FA; Voordeckers K; Christiaens JF; Baying B; Benes V; Sakai R; Aerts J; Zhu B; Van Dijck P; Verstrepen KJ
    Nat Commun; 2014 Sep; 5():4868. PubMed ID: 25204769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlating overrepresented upstream motifs to gene expression: a computational approach to regulatory element discovery in eukaryotes.
    Caselle M; Di Cunto F; Provero P
    BMC Bioinformatics; 2002; 3():7. PubMed ID: 11876822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel motif-discovery algorithm to identify co-regulatory motifs in large transcription factor and microRNA co-regulatory networks in human.
    Liang C; Li Y; Luo J; Zhang Z
    Bioinformatics; 2015 Jul; 31(14):2348-55. PubMed ID: 25788622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feed-forward loop circuits as a side effect of genome evolution.
    Cordero OX; Hogeweg P
    Mol Biol Evol; 2006 Oct; 23(10):1931-6. PubMed ID: 16840361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotype analysis using network motifs derived from changes in regulatory network dynamics.
    Cavelier G; Anastassiou D
    Proteins; 2005 Aug; 60(3):525-46. PubMed ID: 15971229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of transcriptional variability by overlapping feed-forward regulatory motifs.
    Ratushny AV; Ramsey SA; Roda O; Wan Y; Smith JJ; Aitchison JD
    Biophys J; 2008 Oct; 95(8):3715-23. PubMed ID: 18621837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bridge and brick network motifs: identifying significant building blocks from complex biological systems.
    Huang CY; Cheng CY; Sun CT
    Artif Intell Med; 2007 Oct; 41(2):117-27. PubMed ID: 17825540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the Network Basis of Negative Genetic Interactions in Saccharomyces cerevisiae with Integrated Biological Networks and Triplet Motif Analysis.
    Ignatius Pang CN; Goel A; Wilkins MR
    J Proteome Res; 2018 Mar; 17(3):1014-1030. PubMed ID: 29392949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network motifs: structure does not determine function.
    Ingram PJ; Stumpf MP; Stark J
    BMC Genomics; 2006 May; 7():108. PubMed ID: 16677373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data.
    Panchy NL; Lloyd JP; Shiu SH
    BMC Genomics; 2020 Feb; 21(1):159. PubMed ID: 32054475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation network rewiring by gene duplication.
    Freschi L; Courcelles M; Thibault P; Michnick SW; Landry CR
    Mol Syst Biol; 2011 Jul; 7():504. PubMed ID: 21734643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data.
    Gao F; Foat BC; Bussemaker HJ
    BMC Bioinformatics; 2004 Mar; 5():31. PubMed ID: 15113405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of cis-regulatory elements in duplicated genes of yeast.
    Papp B; Pál C; Hurst LD
    Trends Genet; 2003 Aug; 19(8):417-22. PubMed ID: 12902158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.