These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 17967056)

  • 1. Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: a review.
    Kalluri S; Gilruth P; Rogers D; Szczur M
    PLoS Pathog; 2007 Oct; 3(10):1361-71. PubMed ID: 17967056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of remote sensing and GIS for spatial prediction of vector-borne diseases transmission: a systematic review.
    Palaniyandi M
    J Vector Borne Dis; 2012 Dec; 49(4):197-204. PubMed ID: 23428518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate-based health monitoring systems for eco-climatic conditions associated with infectious diseases.
    Pinzon E; Wilson JM; Tucker CJ
    Bull Soc Pathol Exot; 2005 Sep; 98(3):239-43. PubMed ID: 16267968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remote sensing, land cover changes, and vector-borne diseases: use of high spatial resolution satellite imagery to map the risk of occurrence of cutaneous leishmaniasis in Ghardaïa, Algeria.
    Garni R; Tran A; Guis H; Baldet T; Benallal K; Boubidi S; Harrat Z
    Infect Genet Evol; 2014 Dec; 28():725-34. PubMed ID: 25305006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of remote sensing to arthropod vector surveillance and control.
    Washino RK; Wood BL
    Am J Trop Med Hyg; 1994; 50(6 Suppl):134-44. PubMed ID: 8024079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Analysis of Distribution of Vector-Borne Diseases Using Geographic Information Systems].
    Nihei N
    Nihon Eiseigaku Zasshi; 2017; 72(2):123-127. PubMed ID: 28552892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Geographical Information Systems and remote sensing technologies in parasitological epidemiology].
    Rinaldi L; Cascone C; Sibilio G; Musella V; Taddei R; Cringoli G
    Parassitologia; 2004 Jun; 46(1-2):71-4. PubMed ID: 15305690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deriving meteorological variables across Africa for the study and control of vector-borne disease: a comparison of remote sensing and spatial interpolation of climate.
    Hay SI; Lennon JJ
    Trop Med Int Health; 1999 Jan; 4(1):58-71. PubMed ID: 10203175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental information systems for the control of arthropod vectors of disease.
    Thomson MC; Connor SJ
    Med Vet Entomol; 2000 Sep; 14(3):227-44. PubMed ID: 11016429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Satellite imaging and vector-borne diseases: the approach of the French National Space Agency (CNES).
    Marechal F; Ribeiro N; Lafaye M; Güell A
    Geospat Health; 2008 Nov; 3(1):1-5. PubMed ID: 19021103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Earth observation in support of malaria control and epidemiology: MALAREO monitoring approaches.
    Franke J; Gebreslasie M; Bauwens I; Deleu J; Siegert F
    Geospat Health; 2015 Jun; 10(1):335. PubMed ID: 26054520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remote sensing and human health: new sensors and new opportunities.
    Beck LR; Lobitz BM; Wood BL
    Emerg Infect Dis; 2000; 6(3):217-27. PubMed ID: 10827111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially targeting Culex quinquefasciatus aquatic habitats on modified land cover for implementing an Integrated Vector Management (IVM) program in three villages within the Mwea Rice Scheme, Kenya.
    Jacob BG; Shililu J; Muturi EJ; Mwangangi JM; Muriu SM; Funes J; Githure J; Regens JL; Novak RJ
    Int J Health Geogr; 2006 May; 5():18. PubMed ID: 16684354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biology-based mapping of vector-borne parasites by geographic information systems and remote sensing.
    Malone JB; Nieto P; Tadesse A
    Parassitologia; 2006 Jun; 48(1-2):77-9. PubMed ID: 16881402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in satellite remote sensing of environmental variables for epidemiological applications.
    Goetz SJ; Prince SD; Small J
    Adv Parasitol; 2000; 47():289-307. PubMed ID: 10997210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the biocoenose of parasitic diseases using remote sensing and geographic information systems.
    Malone JB; McNally KL; McCarroll JC; Corbett JD; Mkoji G
    Parassitologia; 2004 Jun; 46(1-2):59-61. PubMed ID: 15305687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biology-based mapping of vector-borne parasites by Geographic Information Systems and Remote Sensing.
    Malone JB
    Parassitologia; 2005 Mar; 47(1):27-50. PubMed ID: 16044674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Will integrated surveillance systems for vectors and vector-borne diseases be the future of controlling vector-borne diseases? A practical example from China.
    Wu Y; Ling F; Hou J; Guo S; Wang J; Gong Z
    Epidemiol Infect; 2016 Jul; 144(9):1895-903. PubMed ID: 26899818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Looking forward by looking back: using historical calibration to improve forecasts of human disease vector distributions.
    Acheson ES; Kerr JT
    Vector Borne Zoonotic Dis; 2015 Mar; 15(3):173-83. PubMed ID: 25793472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.