BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 17967416)

  • 1. Characterizations of a loss-of-function mutation in the Kir3.4 channel subunit.
    Calloe K; Ravn LS; Schmitt N; Sui JL; Duno M; Haunso S; Grunnet M; Svendsen JH; Olesen SP
    Biochem Biophys Res Commun; 2007 Dec; 364(4):889-95. PubMed ID: 17967416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heteromeric assembly of inward rectifier channel subunit Kir2.1 with Kir3.1 and with Kir3.4.
    Ishihara K; Yamamoto T; Kubo Y
    Biochem Biophys Res Commun; 2009 Mar; 380(4):832-7. PubMed ID: 19338762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of genetically-encoded Gβγ scavengers on receptor-activated and basal Kir3.1/Kir3.4 channel current in rat atrial myocytes.
    Kienitz MC; Mintert-Jancke E; Hertel F; Pott L
    Cell Signal; 2014 Jun; 26(6):1182-92. PubMed ID: 24576551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subunit interactions in the assembly of neuronal Kir3.0 inwardly rectifying K+ channels.
    Wischmeyer E; Döring F; Wischmeyer E; Spauschus A; Thomzig A; Veh R; Karschin A
    Mol Cell Neurosci; 1997; 9(3):194-206. PubMed ID: 9245502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The single nucleotide polymorphisms of Kir3.4 gene and their correlation with lone paroxysmal atrial fibrillation in Chinese Han population.
    Zhang C; Yuan GH; Cheng ZF; Xu MW; Hou LF; Wei FP
    Heart Lung Circ; 2009 Aug; 18(4):257-61. PubMed ID: 19208499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificity of Gbetagamma signaling depends on Galpha subunit coupling with G-protein-sensitive K(+) channels.
    Geng X; Du XN; Rusinova R; Liu BY; Li F; Zhang X; Chen XJ; Logothetis DE; Zhang HL
    Pharmacology; 2009; 84(2):82-90. PubMed ID: 19590257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of a constitutive Na+-dependent inward-rectifier current in rat adult atrial myocytes by overexpression of Kir3.4.
    Mintert E; Bösche LI; Rinne A; Timpert M; Kienitz MC; Pott L; Bender K
    J Physiol; 2007 Nov; 585(Pt 1):3-13. PubMed ID: 17884923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Kir3.4 mutation causes Andersen-Tawil syndrome by an inhibitory effect on Kir2.1.
    Kokunai Y; Nakata T; Furuta M; Sakata S; Kimura H; Aiba T; Yoshinaga M; Osaki Y; Nakamori M; Itoh H; Sato T; Kubota T; Kadota K; Shindo K; Mochizuki H; Shimizu W; Horie M; Okamura Y; Ohno K; Takahashi MP
    Neurology; 2014 Mar; 82(12):1058-64. PubMed ID: 24574546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. K+ activation of kir3.1/kir3.4 and kv1.4 K+ channels is regulated by extracellular charges.
    Claydon TW; Makary SY; Dibb KM; Boyett MR
    Biophys J; 2004 Oct; 87(4):2407-18. PubMed ID: 15454439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potassium channel gating in the absence of the highly conserved glycine of the inner transmembrane helix.
    Rosenhouse-Dantsker A; Logothetis DE
    Channels (Austin); 2007; 1(3):189-97. PubMed ID: 18690025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dominant negative effects of a Gbeta mutant on G-protein coupled inward rectifier K+ channel.
    Zhao Q; Albsoul-Younes AM; Zhao P; Kozasa T; Nakajima Y; Nakajima S
    FEBS Lett; 2006 Jul; 580(16):3879-82. PubMed ID: 16797547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kir3.1/3.2 encodes an I(KACh)-like current in gastrointestinal myocytes.
    Bradley KK; Hatton WJ; Mason HS; Walker RL; Flynn ER; Kenyon JL; Horowitz B
    Am J Physiol Gastrointest Liver Physiol; 2000 Feb; 278(2):G289-96. PubMed ID: 10666054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between the RGS domain of RGS4 with G protein alpha subunits mediates the voltage-dependent relaxation of the G protein-gated potassium channel.
    Inanobe A; Fujita S; Makino Y; Matsushita K; Ishii M; Chachin M; Kurachi Y
    J Physiol; 2001 Aug; 535(Pt 1):133-43. PubMed ID: 11507164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single channel studies of inward rectifier potassium channel regulation by muscarinic acetylcholine receptors.
    Bard J; Kunkel MT; Peralta EG
    J Gen Physiol; 2000 Nov; 116(5):645-52. PubMed ID: 11055993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of regions that regulate the expression and activity of G protein-gated inward rectifier K+ channels in Xenopus oocytes.
    Stevens EB; Woodward R; Ho IH; Murrell-Lagnado R
    J Physiol; 1997 Sep; 503 ( Pt 3)(Pt 3):547-62. PubMed ID: 9379410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RGS3 and RGS4 differentially associate with G protein-coupled receptor-Kir3 channel signaling complexes revealing two modes of RGS modulation. Precoupling and collision coupling.
    Jaén C; Doupnik CA
    J Biol Chem; 2006 Nov; 281(45):34549-60. PubMed ID: 16973624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inward rectifier potassium currents as a target for atrial fibrillation therapy.
    Ehrlich JR
    J Cardiovasc Pharmacol; 2008 Aug; 52(2):129-35. PubMed ID: 18670367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Critical Gating Switch at a Modulatory Site in Neuronal Kir3 Channels.
    Adney SK; Ha J; Meng XY; Kawano T; Logothetis DE
    J Neurosci; 2015 Oct; 35(42):14397-405. PubMed ID: 26490875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutant KCNJ3 and KCNJ5 Potassium Channels as Novel Molecular Targets in Bradyarrhythmias and Atrial Fibrillation.
    Yamada N; Asano Y; Fujita M; Yamazaki S; Inanobe A; Matsuura N; Kobayashi H; Ohno S; Ebana Y; Tsukamoto O; Ishino S; Takuwa A; Kioka H; Yamashita T; Hashimoto N; Zankov DP; Shimizu A; Asakura M; Asanuma H; Kato H; Nishida Y; Miyashita Y; Shinomiya H; Naiki N; Hayashi K; Makiyama T; Ogita H; Miura K; Ueshima H; Komuro I; Yamagishi M; Horie M; Kawakami K; Furukawa T; Koizumi A; Kurachi Y; Sakata Y; Minamino T; Kitakaze M; Takashima S
    Circulation; 2019 Apr; 139(18):2157-2169. PubMed ID: 30764634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of Kir3.3 potassium channel subunits in supraependymal axons.
    Prüss H; Derst C; Marinc C; Wenzel M; Veh RW
    Neurosci Lett; 2008 Nov; 445(1):89-93. PubMed ID: 18755244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.