These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 17967700)

  • 41. NMR methods for studying quadruplex nucleic acids.
    Webba da Silva M
    Methods; 2007 Dec; 43(4):264-77. PubMed ID: 17967697
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct observation of the binding process between protein and quantum dots by in situ surface plasmon resonance measurements.
    Xiao Q; Zhou B; Huang S; Tian F; Guan H; Ge Y; Liu X; He Z; Liu Y
    Nanotechnology; 2009 Aug; 20(32):325101. PubMed ID: 19620762
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of loops in the guanine quadruplex formation by DNA/RNA hybrid analogs of G4T4G4.
    Vondrusková J; Kypr J; Kejnovská I; Fialová M; Vorlícková M
    Int J Biol Macromol; 2008 Dec; 43(5):463-7. PubMed ID: 18812187
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A deoxyribozyme with a novel guanine quartet-helix pseudoknot structure.
    McManus SA; Li Y
    J Mol Biol; 2008 Jan; 375(4):960-8. PubMed ID: 18054790
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Determination of refractive index increment ratios for protein-nucleic acid complexes by surface plasmon resonance.
    Di Primo C; Lebars I
    Anal Biochem; 2007 Sep; 368(2):148-55. PubMed ID: 17659251
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Detecting and exploring partially unfolded states of proteins using a sensor with chaperone bound to its surface.
    George DF; Bilek MM; McKenzie DR
    Biosens Bioelectron; 2008 Dec; 24(4):969-75. PubMed ID: 18789859
    [TBL] [Abstract][Full Text] [Related]  

  • 47. NMR spectroscopy and kinetic studies of the quadruplex forming RNA r(UGGAGGU).
    Lipay JM; Mihailescu MR
    Mol Biosyst; 2009 Nov; 5(11):1347-55. PubMed ID: 19823751
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural diversity and extreme stability of unimolecular Oxytricha nova telomeric G-quadruplex.
    Lee JY; Yoon J; Kihm HW; Kim DS
    Biochemistry; 2008 Mar; 47(11):3389-96. PubMed ID: 18298084
    [TBL] [Abstract][Full Text] [Related]  

  • 49. G-quadruplex-specific peptide-hemicyanine ligands by partial combinatorial selection.
    Schouten JA; Ladame S; Mason SJ; Cooper MA; Balasubramanian S
    J Am Chem Soc; 2003 May; 125(19):5594-5. PubMed ID: 12733873
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Substitution of adenine for guanine in the quadruplex-forming human telomere DNA sequence G(3)(T(2)AG(3))(3).
    Tomasko M; Vorlícková M; Sagi J
    Biochimie; 2009 Feb; 91(2):171-9. PubMed ID: 18852018
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spectroscopy probing of the formation, recognition, and conversion of a G-quadruplex in the promoter region of the bcl-2 oncogene.
    Li H; Liu Y; Lin S; Yuan G
    Chemistry; 2009; 15(10):2445-52. PubMed ID: 19156807
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Immobilization and clustering of structurally defined oligosaccharides for sugar chips: an improved method for surface plasmon resonance analysis of protein-carbohydrate interactions.
    Suda Y; Arano A; Fukui Y; Koshida S; Wakao M; Nishimura T; Kusumoto S; Sobel M
    Bioconjug Chem; 2006; 17(5):1125-35. PubMed ID: 16984119
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Surface Plasmon Resonance kinetic analysis of the interaction between G-quadruplex nucleic acids and an anti-G-quadruplex monoclonal antibody.
    Lago S; Nadai M; Rossetto M; Richter SN
    Biochim Biophys Acta Gen Subj; 2018 Jun; 1862(6):1276-1282. PubMed ID: 29524541
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Circular dichroism spectra and electrophoretic mobility shift assays show that human replication protein A binds and melts intramolecular G-quadruplex structures.
    Fan JH; Bochkareva E; Bochkarev A; Gray DM
    Biochemistry; 2009 Feb; 48(5):1099-111. PubMed ID: 19187036
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Convection, diffusion and reaction in a surface-based biosensor: modeling of cooperativity and binding site competition on the surface and in the hydrogel.
    Lebedev K; Mafé S; Stroeve P
    J Colloid Interface Sci; 2006 Apr; 296(2):527-37. PubMed ID: 16359694
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Anti-peptide antibody screening: selection of high affinity monoclonal reagents by a refined surface plasmon resonance technique.
    Pope ME; Soste MV; Eyford BA; Anderson NL; Pearson TW
    J Immunol Methods; 2009 Feb; 341(1-2):86-96. PubMed ID: 19041872
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of Ca2+ and phosphocholine interactions with C-reactive protein using a surface plasmon resonance biosensor.
    Christopeit T; Gossas T; Danielson UH
    Anal Biochem; 2009 Aug; 391(1):39-44. PubMed ID: 19435596
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Measuring binding kinetics of surface-bound molecules using the surface plasmon resonance technique.
    Li B; Chen J; Long M
    Anal Biochem; 2008 Jun; 377(2):195-201. PubMed ID: 18384740
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Diverse polymorphism of G-quadruplexes as a kinetic phenomenon.
    Prislan I; Lah J; Vesnaver G
    J Am Chem Soc; 2008 Oct; 130(43):14161-9. PubMed ID: 18826223
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Concentration of dye-labeled nucleotides incorporated into DNA determined by surface plasmon resonance-surface plasmon fluorescence spectroscopy.
    Ekgasit S; Stengel G; Knoll W
    Anal Chem; 2004 Aug; 76(16):4747-55. PubMed ID: 15307786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.