BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 17968010)

  • 21. Production of Hydroxyl Radical via the Activation of Hydrogen Peroxide by Hydroxylamine.
    Chen L; Li X; Zhang J; Fang J; Huang Y; Wang P; Ma J
    Environ Sci Technol; 2015 Sep; 49(17):10373-9. PubMed ID: 26274915
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The reductive activation of the antitumor drug RH1 to its semiquinone free radical by NADPH cytochrome P450 reductase and by HCT116 human colon cancer cells.
    Hasinoff BB; Begleiter A
    Free Radic Res; 2006 Sep; 40(9):974-8. PubMed ID: 17015278
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence for production of hydroxyl radicals by pentachlorophenol metabolites and hydrogen peroxide: A metal-independent organic Fenton reaction.
    Zhu BZ; Kitrossky N; Chevion M
    Biochem Biophys Res Commun; 2000 Apr; 270(3):942-6. PubMed ID: 10772930
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of molecular oxygen in the generation of hydroxyl and superoxide anion radicals during enzymatic Cr(VI) reduction and its implication to Cr(VI)-induced carcinogenesis.
    Leonard S; Wang S; Zang L; Castranova V; Vallyathan V; Shi X
    J Environ Pathol Toxicol Oncol; 2000; 19(1-2):49-60. PubMed ID: 10905508
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic Tracking of Highly Toxic Intermediates in Photocatalytic Degradation of Pentachlorophenol by Continuous Flow Chemiluminescence.
    Ma HY; Zhao L; Wang DB; Zhang H; Guo LH
    Environ Sci Technol; 2018 Mar; 52(5):2870-2877. PubMed ID: 29394042
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intermediates in wet oxidation of cellulose: identification of hydroxyl radical and characterization of hydrogen peroxide.
    Robert R; Barbati S; Ricq N; Ambrosio M
    Water Res; 2002 Nov; 36(19):4821-9. PubMed ID: 12448525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reaction of vanadyl with hydrogen peroxide. An ESR and spin trapping study.
    Carmichael AJ
    Free Radic Res Commun; 1990; 10(1-2):37-45. PubMed ID: 2165984
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative study of the formation of oxidative damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) adduct from the nucleoside 2'-deoxyguanosine by transition metals and suspensions of particulate matter in relation to metal content and redox reactivity.
    Valavanidis A; Vlahoyianni T; Fiotakis K
    Free Radic Res; 2005 Oct; 39(10):1071-81. PubMed ID: 16298732
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Comparison of hydroxyl radical production rates in H2O2 solution under homogeneous catalysis of Fe3+ or Fe2+].
    Gao YX; Zhang Y; Yang M; Hu JY
    Huan Jing Ke Xue; 2006 Feb; 27(2):305-9. PubMed ID: 16686194
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spin trapping of azidyl and hydroxyl radicals in azide-inhibited rat brain submitochondrial particles.
    Partridge RS; Monroe SM; Parks JK; Johnson K; Parker WD; Eaton GR; Eaton SS
    Arch Biochem Biophys; 1994 Apr; 310(1):210-7. PubMed ID: 8161207
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reactions of low valent transition metal complexes with hydrogen peroxide. Are they "Fenton-like" or not? 4. The case of Fe(II)L, L = edta; hedta and tcma.
    Luzzatto E; Cohen H; Stockheim C; Wieghardt K; Meyerstein D
    Free Radic Res; 1995 Nov; 23(5):453-63. PubMed ID: 7581828
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms of formation of 8-oxoguanine due to reactions of one and two OH* radicals and the H2O2 molecule with guanine: A quantum computational study.
    Jena NR; Mishra PC
    J Phys Chem B; 2005 Jul; 109(29):14205-18. PubMed ID: 16852784
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct evidence for inhibition of free radical formation from Cu(I) and hydrogen peroxide by glutathione and other potential ligands using the EPR spin-trapping technique.
    Hanna PM; Mason RP
    Arch Biochem Biophys; 1992 May; 295(1):205-13. PubMed ID: 1315504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quinolinic acid-iron(ii) complexes: slow autoxidation, but enhanced hydroxyl radical production in the Fenton reaction.
    Pláteník J; Stopka P; Vejrazka M; Stípek S
    Free Radic Res; 2001 May; 34(5):445-59. PubMed ID: 11378528
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Studies on the activation of molecular oxygen and the biological defence mechanism against active oxygen species].
    Ozawa T
    Yakugaku Zasshi; 1990 Sep; 110(9):617-38. PubMed ID: 2175787
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three H₂O₂ molecules are involved in the "Fenton-like" reaction between Co(H₂O)₆²⁺ and H₂O₂.
    Burg A; Shusterman I; Kornweitz H; Meyerstein D
    Dalton Trans; 2014 Jun; 43(24):9111-5. PubMed ID: 24805267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polysulfides and products of H
    Misak A; Grman M; Bacova Z; Rezuchova I; Hudecova S; Ondriasova E; Krizanova O; Brezova V; Chovanec M; Ondrias K
    Nitric Oxide; 2018 Jun; 76():136-151. PubMed ID: 28951200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydroxyl free radical production by the reaction of N-methyl-N'-nitro-N-nitrosoguanidine with hydrogen peroxide without exposure to light.
    Mikuni T; Tatsuta M; Kamachi M
    Biochem Cell Biol; 1992; 70(3-4):262-8. PubMed ID: 1325161
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of NAD(P)H:quinone oxidoreductase in quinone-mediated p21 induction in human colon carcinoma cells.
    Qiu XB; Cadenas E
    Arch Biochem Biophys; 1997 Oct; 346(2):241-51. PubMed ID: 9343371
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identifying the reactive sites of hydrogen peroxide decomposition and hydroxyl radical formation on chrysotile asbestos surfaces.
    Walter M; Schenkeveld WDC; Geroldinger G; Gille L; Reissner M; Kraemer SM
    Part Fibre Toxicol; 2020 Jan; 17(1):3. PubMed ID: 31959185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.