These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 1796813)
1. The promotion of molasse alcoholic fermentation using Saccharomyces cerevisiae in the presence of gamma-alumina. Iconomou L; Psarianos C; Kanellaki M; Kalliafas A; Kana K; Koutinas AA Appl Biochem Biotechnol; 1991 Oct; 31(1):83-96. PubMed ID: 1796813 [TBL] [Abstract][Full Text] [Related]
2. Continuous potable alcohol production by immobilized Saccharomyces cerevisiae on mineral kissiris. Koutinas AA; Gourdoupis C; Psarianos C; Kaliafas A; Kanellaki M Appl Biochem Biotechnol; 1991 Aug; 30(2):203-16. PubMed ID: 1952932 [TBL] [Abstract][Full Text] [Related]
3. Production of fructose and ethanol from sugar beet molasses using Saccharomyces cerevisiae ATCC 36858. Atiyeh H; Duvnjak Z Biotechnol Prog; 2002; 18(2):234-9. PubMed ID: 11934290 [TBL] [Abstract][Full Text] [Related]
4. Effect of pressure and temperature on alcoholic fermentation by Saccharomyces cerevisiae immobilized on γ-alumina pellets. Galanakis CM; Kordulis C; Kanellaki M; Koutinas AA; Bekatorou A; Lycourghiotis A Bioresour Technol; 2012 Jun; 114():492-8. PubMed ID: 22472637 [TBL] [Abstract][Full Text] [Related]
5. Kinetics of ethanol production from carob pods extract by immobilized Saccharomyces cerevisiae cells. Roukas T Appl Biochem Biotechnol; 1994 Jan; 44(1):49-64. PubMed ID: 8129378 [TBL] [Abstract][Full Text] [Related]
6. Continuous ethanol production from sugarcane molasses using a column reactor of immobilized Saccharomyces cerevisiae HAU-1. Sheoran A; Yadav BS; Nigam P; Singh D J Basic Microbiol; 1998; 38(2):123-8. PubMed ID: 9637012 [TBL] [Abstract][Full Text] [Related]
7. New alcohol resistant strains of Saccharomyces cerevisiae species for potable alcohol production using molasse. Argiriou T; Kalliafas A; Psarianos C; Kana K; Kanellaki M; Koutinas AA Appl Biochem Biotechnol; 1992 Sep; 36(3):153-61. PubMed ID: 1288406 [TBL] [Abstract][Full Text] [Related]
9. Kinetics and thermodynamics of ethanol production by Saccharomyces cerevisiae MLD10 using molasses. Arshad M; Ahmed S; Zia MA; Rajoka MI Appl Biochem Biotechnol; 2014 Mar; 172(5):2455-64. PubMed ID: 24395695 [TBL] [Abstract][Full Text] [Related]
10. Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement. Pattanakittivorakul S; Lertwattanasakul N; Yamada M; Limtong S Antonie Van Leeuwenhoek; 2019 Jul; 112(7):975-990. PubMed ID: 30666530 [TBL] [Abstract][Full Text] [Related]
11. Improvement of ethanol production in fed-batch fermentation using a mixture of sugarcane juice and molasse under very high-gravity conditions. Cruz ML; de Resende MM; Ribeiro EJ Bioprocess Biosyst Eng; 2021 Mar; 44(3):617-625. PubMed ID: 33131002 [TBL] [Abstract][Full Text] [Related]
12. Production of ethanol by filamentous and yeast-like forms of Mucor indicus from fructose, glucose, sucrose, and molasses. Sharifia M; Karimi K; Taherzadeh MJ J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1253-9. PubMed ID: 18712551 [TBL] [Abstract][Full Text] [Related]
13. Ethanol fermentation in a magnetically fluidized bed reactor with immobilized Saccharomyces cerevisiae in magnetic particles. Liu CZ; Wang F; Ou-Yang F Bioresour Technol; 2009 Jan; 100(2):878-82. PubMed ID: 18760598 [TBL] [Abstract][Full Text] [Related]
14. Effect of carbohydrate substrate on fermentation by kefir yeast supported on delignified cellulosic materials. Athanasiadis I; Boskou D; Kanellaki M; Koutinas AA J Agric Food Chem; 2001 Feb; 49(2):658-63. PubMed ID: 11262008 [TBL] [Abstract][Full Text] [Related]
15. Continuous ethanol production from sugarcane molasses using a newly designed combined bioreactor system by immobilized Saccharomyces cerevisiae. Xu W; Liang L; Song Z; Zhu M Biotechnol Appl Biochem; 2014; 61(3):289-96. PubMed ID: 24164318 [TBL] [Abstract][Full Text] [Related]
16. Study of the production of fructose and ethanol from sucrose media by Saccharomyces cerevisiae. Atiyeh H; Duvnjak Z Appl Microbiol Biotechnol; 2001 Oct; 57(3):407-11. PubMed ID: 11759694 [TBL] [Abstract][Full Text] [Related]
17. Optimization of process variables for minimization of byproduct formation during fermentation of blackstrap molasses to ethanol at industrial scale. Arshad M; Khan ZM; Khalil-ur-Rehman ; Shah FA; Rajoka MI Lett Appl Microbiol; 2008 Nov; 47(5):410-4. PubMed ID: 19146530 [TBL] [Abstract][Full Text] [Related]
18. Agar immobilized yeast cells in tubular reactor for ethanol production. Nigam JN; Gogoi BK; Bezbaruah RL Indian J Exp Biol; 1998 Aug; 36(8):816-9. PubMed ID: 9838885 [TBL] [Abstract][Full Text] [Related]
19. Interaction of 4-ethylphenol, pH, sucrose and ethanol on the growth and fermentation capacity of the industrial strain of Saccharomyces cerevisiae PE-2. Covre EA; Silva LFL; Bastos RG; Ceccato-Antonini SR World J Microbiol Biotechnol; 2019 Aug; 35(9):136. PubMed ID: 31432249 [TBL] [Abstract][Full Text] [Related]
20. Ethanol production from sweet sorghum juice using very high gravity technology: effects of carbon and nitrogen supplementations. Laopaiboon L; Nuanpeng S; Srinophakun P; Klanrit P; Laopaiboon P Bioresour Technol; 2009 Sep; 100(18):4176-82. PubMed ID: 19375908 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]