BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 17968490)

  • 21. Increased resistance during jump exercise does not enhance cortical bone formation.
    Boudreaux RD; Swift JM; Gasier HG; Wiggs MP; Hogan HA; Fluckey JD; Bloomfield SA
    Med Sci Sports Exerc; 2014; 46(5):982-9. PubMed ID: 24743108
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modification of the in vivo four-point loading model for studying mechanically induced bone adaptation.
    Forwood MR; Bennett MB; Blowers AR; Nadorfi RL
    Bone; 1998 Sep; 23(3):307-10. PubMed ID: 9737355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bone modeling response to voluntary exercise in the hindlimb of mice.
    Plochocki JH; Rivera JP; Zhang C; Ebba SA
    J Morphol; 2008 Mar; 269(3):313-8. PubMed ID: 17957711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Viscoelastic response of the rat loading model: implications for studies of strain-adaptive bone formation.
    Hsieh YF; Wang T; Turner CH
    Bone; 1999 Sep; 25(3):379-82. PubMed ID: 10495144
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cortical tibial bone volume in two strains of mice: effects of sciatic neurectomy and genetic regulation of bone response to mechanical loading.
    Kodama Y; Dimai HP; Wergedal J; Sheng M; Malpe R; Kutilek S; Beamer W; Donahue LR; Rosen C; Baylink DJ; Farley J
    Bone; 1999 Aug; 25(2):183-90. PubMed ID: 10456383
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adaptation of tibial structure and strength to axial compression depends on loading history in both C57BL/6 and BALB/c mice.
    Holguin N; Brodt MD; Sanchez ME; Kotiya AA; Silva MJ
    Calcif Tissue Int; 2013 Sep; 93(3):211-21. PubMed ID: 23708853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Periosteal bone formation stimulated by externally induced bending strains.
    Raab-Cullen DM; Akhter MP; Kimmel DB; Recker RR
    J Bone Miner Res; 1994 Aug; 9(8):1143-52. PubMed ID: 7976496
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical load increases in bone formation via a sclerostin-independent pathway.
    Morse A; McDonald MM; Kelly NH; Melville KM; Schindeler A; Kramer I; Kneissel M; van der Meulen MC; Little DG
    J Bone Miner Res; 2014 Nov; 29(11):2456-67. PubMed ID: 24821585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Noninvasive loading of the rat ulna in vivo induces a strain-related modeling response uncomplicated by trauma or periostal pressure.
    Torrance AG; Mosley JR; Suswillo RF; Lanyon LE
    Calcif Tissue Int; 1994 Mar; 54(3):241-7. PubMed ID: 8055374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element.
    De Souza RL; Matsuura M; Eckstein F; Rawlinson SC; Lanyon LE; Pitsillides AA
    Bone; 2005 Dec; 37(6):810-8. PubMed ID: 16198164
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The response of rat tibiae to incremental bouts of mechanical loading: a quantum concept for bone formation.
    Forwood MR; Turner CH
    Bone; 1994; 15(6):603-9. PubMed ID: 7873288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sympathetic nervous system does not mediate the load-induced cortical new bone formation.
    de Souza RL; Pitsillides AA; Lanyon LE; Skerry TM; Chenu C
    J Bone Miner Res; 2005 Dec; 20(12):2159-68. PubMed ID: 16294269
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Parathyroid hormone's enhancement of bones' osteogenic response to loading is affected by ageing in a dose- and time-dependent manner.
    Meakin LB; Todd H; Delisser PJ; Galea GL; Moustafa A; Lanyon LE; Windahl SH; Price JS
    Bone; 2017 May; 98():59-67. PubMed ID: 28249797
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic variations in bone density, histomorphometry, and strength in mice.
    Akhter MP; Iwaniec UT; Covey MA; Cullen DM; Kimmel DB; Recker RR
    Calcif Tissue Int; 2000 Oct; 67(4):337-44. PubMed ID: 11000349
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hindlimb unloading has a greater effect on cortical compared with cancellous bone in mature female rats.
    Allen MR; Bloomfield SA
    J Appl Physiol (1985); 2003 Feb; 94(2):642-50. PubMed ID: 12391029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Additional weight bearing during exercise and estrogen in the rat: the effect on bone mass, turnover, and structure.
    Tromp AM; Bravenboer N; Tanck E; Oostlander A; Holzmann PJ; Kostense PJ; Roos JC; Burger EH; Huiskes R; Lips P
    Calcif Tissue Int; 2006 Dec; 79(6):404-15. PubMed ID: 17160577
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Constrained tibial vibration in mice: a method for studying the effects of vibrational loading of bone.
    Christiansen BA; Bayly PV; Silva MJ
    J Biomech Eng; 2008 Aug; 130(4):044502. PubMed ID: 18601464
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone morphogenetic protein-7 selectively enhances mechanically induced bone formation.
    Cheline AJ; Reddi AH; Martin RB
    Bone; 2002 Nov; 31(5):570-4. PubMed ID: 12477570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ex vivo determination of bone tissue strains for an in vivo mouse tibial loading model.
    Carriero A; Abela L; Pitsillides AA; Shefelbine SJ
    J Biomech; 2014 Jul; 47(10):2490-7. PubMed ID: 24835472
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compressive loading of the murine tibia reveals site-specific micro-scale differences in adaptation and maturation rates of bone.
    Bergström I; Kerns JG; Törnqvist AE; Perdikouri C; Mathavan N; Koskela A; Henriksson HB; Tuukkanen J; Andersson G; Isaksson H; Goodship AE; Windahl SH
    Osteoporos Int; 2017 Mar; 28(3):1121-1131. PubMed ID: 27921145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.