These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 17968538)

  • 1. Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer.
    Pham TH; Boon N; Aelterman P; Clauwaert P; De Schamphelaire L; Vanhaecke L; De Maeyer K; Höfte M; Verstraete W; Rabaey K
    Appl Microbiol Biotechnol; 2008 Jan; 77(5):1119-29. PubMed ID: 17968538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation.
    Pham TH; Boon N; De Maeyer K; Höfte M; Rabaey K; Verstraete W
    Appl Microbiol Biotechnol; 2008 Oct; 80(6):985-93. PubMed ID: 18688612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of electrochemical activity of a strain ISO2-3 phylogenetically related to Aeromonas sp. isolated from a glucose-fed microbial fuel cell.
    Chung K; Okabe S
    Biotechnol Bioeng; 2009 Dec; 104(5):901-10. PubMed ID: 19575435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells.
    Wrighton KC; Agbo P; Warnecke F; Weber KA; Brodie EL; DeSantis TZ; Hugenholtz P; Andersen GL; Coates JD
    ISME J; 2008 Nov; 2(11):1146-56. PubMed ID: 18769460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electricity generation by thermophilic microorganisms from marine sediment.
    Mathis BJ; Marshall CW; Milliken CE; Makkar RS; Creager SE; May HD
    Appl Microbiol Biotechnol; 2008 Feb; 78(1):147-55. PubMed ID: 18080121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system.
    Chung K; Okabe S
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):965-77. PubMed ID: 19404637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioelectricity generation by a Gram-positive Corynebacterium sp. strain MFC03 under alkaline condition in microbial fuel cells.
    Liu M; Yuan Y; Zhang LX; Zhuang L; Zhou SG; Ni JR
    Bioresour Technol; 2010 Mar; 101(6):1807-11. PubMed ID: 19879132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell.
    Kim BH; Park HS; Kim HJ; Kim GT; Chang IS; Lee J; Phung NT
    Appl Microbiol Biotechnol; 2004 Feb; 63(6):672-81. PubMed ID: 12908088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An electricity-generating prosthecate bacterium strain Mfc52 isolated from a microbial fuel cell.
    Kodama Y; Watanabe K
    FEMS Microbiol Lett; 2008 Nov; 288(1):55-61. PubMed ID: 18793200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The direct electrocatalysis of phenazine-1-carboxylic acid excreted by Pseudomonas alcaliphila under alkaline condition in microbial fuel cells.
    Zhang T; Zhang L; Su W; Gao P; Li D; He X; Zhang Y
    Bioresour Technol; 2011 Jul; 102(14):7099-102. PubMed ID: 21596560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electricity generation from glucose by a Klebsiella sp. in microbial fuel cells.
    Xia X; Cao XX; Liang P; Huang X; Yang SP; Zhao GG
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):383-90. PubMed ID: 20419297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Isolation and characterization of electrochemical active bacterial Pseudomonas aeruginosa strain RE7].
    Luo HP; Liu GL; Zhang RD; Cao LX
    Huan Jing Ke Xue; 2009 Jul; 30(7):2118-23. PubMed ID: 19775018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of rhamnolipids on degradation of anthracene by two newly isolated strains, Sphingomonas sp. 12A and Pseudomonas sp. 12B.
    Cui CZ; Zeng C; Wan X; Chen D; Zhang JY; Shen P
    J Microbiol Biotechnol; 2008 Jan; 18(1):63-6. PubMed ID: 18239418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of bacterial cell size on electricity generation in a single-compartmented microbial fuel cell.
    Lee SW; Jeon BY; Park DH
    Biotechnol Lett; 2010 Apr; 32(4):483-7. PubMed ID: 20013300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of electrode reduction activities of Geobacter sulfurreducens and an enriched consortium in an air-cathode microbial fuel cell.
    Ishii S; Watanabe K; Yabuki S; Logan BE; Sekiguchi Y
    Appl Environ Microbiol; 2008 Dec; 74(23):7348-55. PubMed ID: 18836002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Anodic Community in Microbial Fuel Cells with Iron Oxide-Reducing Community.
    Yokoyama H; Ishida M; Yamashita T
    J Microbiol Biotechnol; 2016 Apr; 26(4):757-62. PubMed ID: 26767577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative population dynamics of microbial communities in plankton-fed microbial fuel cells.
    White HK; Reimers CE; Cordes EE; Dilly GF; Girguis PR
    ISME J; 2009 Jun; 3(6):635-46. PubMed ID: 19242533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New exoelectrogen Citrobacter sp. SX-1 isolated from a microbial fuel cell.
    Xu S; Liu H
    J Appl Microbiol; 2011 Nov; 111(5):1108-15. PubMed ID: 21854512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2.
    Song JH; Jeon CO; Choi MH; Yoon SC; Park W
    J Microbiol Biotechnol; 2008 Aug; 18(8):1408-15. PubMed ID: 18756101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterization of a novel simazine-degrading bacterium from agricultural soil of central Chile, Pseudomonas sp. MHP41.
    Hernández M; Villalobos P; Morgante V; González M; Reiff C; Moore E; Seeger M
    FEMS Microbiol Lett; 2008 Sep; 286(2):184-90. PubMed ID: 18647357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.