These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 17968674)
1. Magnesium represses trichothecene biosynthesis and modulates Tri5, Tri6, and Tri12 genes expression in Fusarium graminearum. Pinson-Gadais L; Richard-Forget F; Frasse P; Barreau C; Cahagnier B; Richard-Molard D; Bakan B Mycopathologia; 2008 Jan; 165(1):51-9. PubMed ID: 17968674 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of Fusarium trichothecene biosynthesis by yeast extract components extractable with ethyl acetate. Tanaka Y; Nakajima Y; Maeda K; Matsuyama M; Kanamaru K; Kobayashi T; Ohsato S; Kimura M Int J Food Microbiol; 2019 Jan; 289():24-29. PubMed ID: 30193122 [TBL] [Abstract][Full Text] [Related]
3. Regulation of TRI5 expression and deoxynivalenol biosynthesis by a long non-coding RNA in Fusarium graminearum. Huang P; Yu X; Liu H; Ding M; Wang Z; Xu JR; Jiang C Nat Commun; 2024 Feb; 15(1):1216. PubMed ID: 38332031 [TBL] [Abstract][Full Text] [Related]
4. Re-examination of genetic and nutritional factors related to trichothecene biosynthesis in Fusarium graminearum. Kitou Y; Nakajima Y; Maeda K; Jin Q; Nishiuchi T; Kanamaru K; Kobayashi T; Kimura M Biosci Biotechnol Biochem; 2016; 80(2):414-7. PubMed ID: 26413981 [TBL] [Abstract][Full Text] [Related]
5. A novel regulatory gene, Tri10, controls trichothecene toxin production and gene expression. Tag AG; Garifullina GF; Peplow AW; Ake C; Phillips TD; Hohn TM; Beremand MN Appl Environ Microbiol; 2001 Nov; 67(11):5294-302. PubMed ID: 11679358 [TBL] [Abstract][Full Text] [Related]
6. 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) inhibits trichothecene production by Fusarium graminearum through suppression of Tri6 expression. Etzerodt T; Maeda K; Nakajima Y; Laursen B; Fomsgaard IS; Kimura M Int J Food Microbiol; 2015 Dec; 214():123-128. PubMed ID: 26276561 [TBL] [Abstract][Full Text] [Related]
7. Identification of new genes positively regulated by Tri10 and a regulatory network for trichothecene mycotoxin production. Peplow AW; Tag AG; Garifullina GF; Beremand MN Appl Environ Microbiol; 2003 May; 69(5):2731-6. PubMed ID: 12732543 [TBL] [Abstract][Full Text] [Related]
8. Identification and Characterization of Small Molecule Compounds That Modulate Trichothecene Production by Fusarium graminearum. Maeda K; Ichikawa H; Nakajima Y; Motoyama T; Ohsato S; Kanamaru K; Kobayashi T; Nishiuchi T; Osada H; Kimura M ACS Chem Biol; 2018 May; 13(5):1260-1269. PubMed ID: 29565558 [TBL] [Abstract][Full Text] [Related]
9. Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis. Seong KY; Pasquali M; Zhou X; Song J; Hilburn K; McCormick S; Dong Y; Xu JR; Kistler HC Mol Microbiol; 2009 Apr; 72(2):354-67. PubMed ID: 19320833 [TBL] [Abstract][Full Text] [Related]
10. Acidic pH as a determinant of TRI gene expression and trichothecene B biosynthesis in Fusarium graminearum. Merhej J; Boutigny AL; Pinson-Gadais L; Richard-Forget F; Barreau C Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 May; 27(5):710-7. PubMed ID: 20169482 [TBL] [Abstract][Full Text] [Related]
11. Transcription factor ART1 mediates starch hydrolysis and mycotoxin production in Fusarium graminearum and F. verticillioides. Oh M; Son H; Choi GJ; Lee C; Kim JC; Kim H; Lee YW Mol Plant Pathol; 2016 Jun; 17(5):755-68. PubMed ID: 26456718 [TBL] [Abstract][Full Text] [Related]
12. Altered regulation of 15-acetyldeoxynivalenol production in Fusarium graminearum. Chen L; McCormick SP; Hohn TM Appl Environ Microbiol; 2000 May; 66(5):2062-5. PubMed ID: 10788382 [TBL] [Abstract][Full Text] [Related]
13. Leucine metabolism regulates TRI6 expression and affects deoxynivalenol production and virulence in Fusarium graminearum. Subramaniam R; Narayanan S; Walkowiak S; Wang L; Joshi M; Rocheleau H; Ouellet T; Harris LJ Mol Microbiol; 2015 Nov; 98(4):760-9. PubMed ID: 26248604 [TBL] [Abstract][Full Text] [Related]
17. Effect of solute stress and temperature on growth rate and TRI5 gene expression using real time RT-PCR in Fusarium graminearum from Spanish wheat. Marín P; Jurado M; Magan N; Vázquez C; González-Jaén MT Int J Food Microbiol; 2010 Jun; 140(2-3):169-74. PubMed ID: 20439126 [TBL] [Abstract][Full Text] [Related]
18. Altered trichothecene biosynthesis in TRI6-silenced transformants of Fusarium culmorum influences the severity of crown and foot rot on durum wheat seedlings. Scherm B; Orrù M; Balmas V; Spanu F; Azara E; Delogu G; Hammond TM; Keller NP; Migheli Q Mol Plant Pathol; 2011 Oct; 12(8):759-71. PubMed ID: 21726376 [TBL] [Abstract][Full Text] [Related]
19. Flippases play specific but distinct roles in the development, pathogenicity, and secondary metabolism of Fusarium graminearum. Yun Y; Guo P; Zhang J; You H; Guo P; Deng H; Hao Y; Zhang L; Wang X; Abubakar YS; Zhou J; Lu G; Wang Z; Zheng W Mol Plant Pathol; 2020 Oct; 21(10):1307-1321. PubMed ID: 32881238 [TBL] [Abstract][Full Text] [Related]
20. The Fungicidal Activity of Tebuconazole Enantiomers against Fusarium graminearum and Its Selective Effect on DON Production under Different Conditions. Diao X; Han Y; Liu C J Agric Food Chem; 2018 Apr; 66(14):3637-3643. PubMed ID: 29562133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]