These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Computational models for predicting the interaction with ABC transporters. Pinto M; Digles D; Ecker GF Drug Discov Today Technol; 2014 Jun; 12():e69-77. PubMed ID: 25027377 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous Prediction of four ATP-binding Cassette Transporters' Substrates Using Multi-label QSAR. Aniceto N; Freitas AA; Bender A; Ghafourian T Mol Inform; 2016 Oct; 35(10):514-528. PubMed ID: 27582431 [TBL] [Abstract][Full Text] [Related]
4. Blood-brain barrier (BBB) pharmacoproteomics: reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice. Uchida Y; Ohtsuki S; Kamiie J; Terasaki T J Pharmacol Exp Ther; 2011 Nov; 339(2):579-88. PubMed ID: 21828264 [TBL] [Abstract][Full Text] [Related]
5. Structure-activity relationships for xenobiotic transport substrates and inhibitory ligands of P-glycoprotein. Bain LJ; McLachlan JB; LeBlanc GA Environ Health Perspect; 1997 Aug; 105(8):812-8. PubMed ID: 9347896 [TBL] [Abstract][Full Text] [Related]
6. Computational models for prediction of interactions with ABC-transporters. Ecker GF; Stockner T; Chiba P Drug Discov Today; 2008 Apr; 13(7-8):311-7. PubMed ID: 18405843 [TBL] [Abstract][Full Text] [Related]
7. Determination and modelling of stereoselective interactions of ligands with drug transporters: a key dimension in the understanding of drug disposition. Bhatia P; Kolinski M; Moaddel R; Jozwiak K; Wainer IW Xenobiotica; 2008 Jul; 38(7-8):656-75. PubMed ID: 18668426 [TBL] [Abstract][Full Text] [Related]
8. Cysteine-scanning mutagenesis provides no evidence for the extracellular accessibility of the nucleotide-binding domains of the multidrug resistance transporter P-glycoprotein. Blott EJ; Higgins CF; Linton KJ EMBO J; 1999 Dec; 18(23):6800-8. PubMed ID: 10581253 [TBL] [Abstract][Full Text] [Related]
9. Computational classification models for predicting the interaction of drugs with P-glycoprotein and breast cancer resistance protein. Erić S; Kalinić M; Ilić K; Zloh M SAR QSAR Environ Res; 2014; 25(12):939-66. PubMed ID: 25435255 [TBL] [Abstract][Full Text] [Related]
10. A new intestinal cell culture model to discriminate the relative contribution of P-gp and BCRP on transport of substrates such as imatinib. Graber-Maier A; Gutmann H; Drewe J Mol Pharm; 2010 Oct; 7(5):1618-28. PubMed ID: 20701289 [TBL] [Abstract][Full Text] [Related]
11. Arylamino Esters As P-Glycoprotein Modulators: SAR Studies to Establish Requirements for Potency and Selectivity. Teodori E; Dei S; Floriddia E; Perrone MG; Manetti D; Romanelli MN; Contino M; Colabufo NA ChemMedChem; 2015 Aug; 10(8):1339-43. PubMed ID: 26012726 [TBL] [Abstract][Full Text] [Related]
12. Transport of selected PET radiotracers by human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2): an in vitro screening. Tournier N; Valette H; Peyronneau MA; Saba W; Goutal S; Kuhnast B; Dollé F; Scherrmann JM; Cisternino S; Bottlaender M J Nucl Med; 2011 Mar; 52(3):415-23. PubMed ID: 21321274 [TBL] [Abstract][Full Text] [Related]
13. Modeling of active transport systems. Zhang EY; Phelps MA; Cheng C; Ekins S; Swaan PW Adv Drug Deliv Rev; 2002 Mar; 54(3):329-54. PubMed ID: 11922951 [TBL] [Abstract][Full Text] [Related]
14. Recent progress in understanding the mechanism of P-glycoprotein-mediated drug efflux. Loo TW; Clarke DM J Membr Biol; 2005 Aug; 206(3):173-85. PubMed ID: 16456713 [TBL] [Abstract][Full Text] [Related]
15. Improving the stability and function of purified ABCB1 and ABCA4: the influence of membrane lipids. Pollock NL; McDevitt CA; Collins R; Niesten PH; Prince S; Kerr ID; Ford RC; Callaghan R Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):134-47. PubMed ID: 24036079 [TBL] [Abstract][Full Text] [Related]
16. Identification of putative steroid-binding sites in human ABCB1 and ABCG2. Mares-Sámano S; Badhan R; Penny J Eur J Med Chem; 2009 Sep; 44(9):3601-11. PubMed ID: 19303670 [TBL] [Abstract][Full Text] [Related]
17. The Use of Transporter Probe Drug Cocktails for the Assessment of Transporter-Based Drug-Drug Interactions in a Clinical Setting-Proposal of a Four Component Transporter Cocktail. Ebner T; Ishiguro N; Taub ME J Pharm Sci; 2015 Sep; 104(9):3220-8. PubMed ID: 25981193 [TBL] [Abstract][Full Text] [Related]
18. High-activity p-glycoprotein, multidrug resistance protein 2, and breast cancer resistance protein membrane vesicles prepared from transiently transfected human embryonic kidney 293-epstein-barr virus nuclear antigen cells. Karlsson JE; Heddle C; Rozkov A; Rotticci-Mulder J; Tuvesson O; Hilgendorf C; Andersson TB Drug Metab Dispos; 2010 Apr; 38(4):705-14. PubMed ID: 20071452 [TBL] [Abstract][Full Text] [Related]
19. Intestinal absorption mechanism of mirabegron, a potent and selective β₃-adrenoceptor agonist: involvement of human efflux and/or influx transport systems. Takusagawa S; Ushigome F; Nemoto H; Takahashi Y; Li Q; Kerbusch V; Miyashita A; Iwatsubo T; Usui T Mol Pharm; 2013 May; 10(5):1783-94. PubMed ID: 23560393 [TBL] [Abstract][Full Text] [Related]
20. P-glycoprotein limits oral availability, brain penetration, and toxicity of an anionic drug, the antibiotic salinomycin. Lagas JS; Sparidans RW; van Waterschoot RA; Wagenaar E; Beijnen JH; Schinkel AH Antimicrob Agents Chemother; 2008 Mar; 52(3):1034-9. PubMed ID: 18195061 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]