These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 17969167)

  • 1. Heating of metallic implants and instruments induced by gradient switching in a 1.5-Tesla whole-body unit.
    Graf H; Steidle G; Schick F
    J Magn Reson Imaging; 2007 Nov; 26(5):1328-33. PubMed ID: 17969167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eddy-current induction in extended metallic parts as a source of considerable torsional moment.
    Graf H; Lauer UA; Schick F
    J Magn Reson Imaging; 2006 Apr; 23(4):585-90. PubMed ID: 16534754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radio frequency versus susceptibility effects of small conductive implants--a systematic MRI study on aneurysm clips at 1.5 and 3 T.
    Lauer UA; Graf H; Berger A; Claussen CD; Schick F
    Magn Reson Imaging; 2005 May; 23(4):563-9. PubMed ID: 15919602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of radiofrequency-induced temperature elevation of aneurysm clips in a 3.0-tesla magnetic resonance environment.
    Watanabe A; Seguchi T; Koyama J; Aoyama T; Miyahara T; Kakizawa Y; Hongo K
    Neurosurgery; 2007 Nov; 61(5):1062-5; discussion 1065-6. PubMed ID: 18091282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots.
    Busch MH; Vollmann W; Grönemeyer DH
    Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MRI-induced heating of selected thin wire metallic implants-- laboratory and computational studies-- findings and new questions raised.
    Bassen H; Kainz W; Mendoza G; Kellom T
    Minim Invasive Ther Allied Technol; 2006; 15(2):76-84. PubMed ID: 16754190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic variation of off-resonance prepulses for clinical magnetization transfer contrast imaging at 0.2, 1.5, and 3.0 tesla.
    Martirosian P; Boss A; Deimling M; Kiefer B; Schraml C; Schwenzer NF; Claussen CD; Schick F
    Invest Radiol; 2008 Jan; 43(1):16-26. PubMed ID: 18097273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RF heating of implanted spinal fusion stimulator during magnetic resonance imaging.
    Chou CK; McDougall JA; Chan KW
    IEEE Trans Biomed Eng; 1997 May; 44(5):367-73. PubMed ID: 9125821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue warming and regulatory responses induced by radio frequency energy deposition on a whole-body 3-Tesla magnetic resonance imager.
    Boss A; Graf H; Berger A; Lauer UA; Wojtczyk H; Claussen CD; Schick F
    J Magn Reson Imaging; 2007 Nov; 26(5):1334-9. PubMed ID: 17969173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of radiofrequency self-heating around a metallic wire with MR T1-based thermometry.
    Detti V; Grenier D; Perrin E; Beuf O
    Magn Reson Med; 2011 Aug; 66(2):448-55. PubMed ID: 21360744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro investigation of pacemaker lead heating induced by magnetic resonance imaging: role of implant geometry.
    Calcagnini G; Triventi M; Censi F; Mattei E; Bartolini P; Kainz W; Bassen HI
    J Magn Reson Imaging; 2008 Oct; 28(4):879-86. PubMed ID: 18821629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple design changes to wires to substantially reduce MRI-induced heating at 1.5 T: implications for implanted leads.
    Gray RW; Bibens WT; Shellock FG
    Magn Reson Imaging; 2005 Oct; 23(8):887-91. PubMed ID: 16275428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic resonance safety testing of a newly-developed fiber-optic cardiac pacing lead.
    Greatbatch W; Miller V; Shellock FG
    J Magn Reson Imaging; 2002 Jul; 16(1):97-103. PubMed ID: 12112509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heating of metallic rods induced by time-varying gradient fields in MRI.
    El Bannan K; Handler W; Chronik B; Salisbury SP
    J Magn Reson Imaging; 2013 Aug; 38(2):411-6. PubMed ID: 23293032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Evaluation of Artificial Hip Joint with Radiofrequency Heating Issues during MRI Examination: A Comparison between 1.5 T and 3 T].
    Yamazaki M; Ideta T; Kudo S; Nakazawa M
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2016 Jun; 72(6):480-8. PubMed ID: 27320151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance imaging of artificial lumbar disks: safety and metal artifacts.
    Yang CW; Liu L; Wang J; Dong AS; Lu JP; He SS; Li M
    Chin Med J (Engl); 2009 Apr; 122(8):911-6. PubMed ID: 19493413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comments on MR heating tests of critical implants.
    Shellock FG
    J Magn Reson Imaging; 2007 Nov; 26(5):1182-5. PubMed ID: 17969159
    [No Abstract]   [Full Text] [Related]  

  • 18. Measurement of electric fields induced in a human subject due to natural movements in static magnetic fields or exposure to alternating magnetic field gradients.
    Glover PM; Bowtell R
    Phys Med Biol; 2008 Jan; 53(2):361-73. PubMed ID: 18184992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 8.0-Tesla human MR system: temperature changes associated with radiofrequency-induced heating of a head phantom.
    Kangarlu A; Shellock FG; Chakeres DW
    J Magn Reson Imaging; 2003 Feb; 17(2):220-6. PubMed ID: 12541230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic resonance compatibility of intraocular lenses measured at 7 Tesla.
    van Rijn GA; Mourik JE; Teeuwisse WM; Luyten GP; Webb AG
    Invest Ophthalmol Vis Sci; 2012 Jun; 53(7):3449-53. PubMed ID: 22538424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.