These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 17969470)

  • 41. Is it on? An algorithm for discerning wrist-accelerometer non-wear times from sleep/wake activity.
    Kosmadopoulos A; Darwent D; Roach GD
    Chronobiol Int; 2016; 33(6):599-603. PubMed ID: 27096291
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Actigraphic assessment of sleep/wake behavior in central disorders of hypersomnolence.
    Filardi M; Pizza F; Martoni M; Vandi S; Plazzi G; Natale V
    Sleep Med; 2015 Jan; 16(1):126-30. PubMed ID: 25547035
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Validation of actigraphy for determining sleep and wake in children with sleep disordered breathing.
    Hyde M; O'Driscoll DM; Binette S; Galang C; Tan SK; Verginis N; Davey MJ; Horne RS
    J Sleep Res; 2007 Jun; 16(2):213-6. PubMed ID: 17542951
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of 7 versus 14 days wrist actigraphy monitoring in a sleep disorders clinic population.
    Briscoe S; Hardy E; Pengo MF; Kosky C; Williams AJ; Hart N; Steier J
    Chronobiol Int; 2014 Apr; 31(3):356-62. PubMed ID: 24304408
    [TBL] [Abstract][Full Text] [Related]  

  • 45. How well does a commercially available wearable device measure sleep in young athletes?
    Sargent C; Lastella M; Romyn G; Versey N; Miller DJ; Roach GD
    Chronobiol Int; 2018 Jun; 35(6):754-758. PubMed ID: 29750580
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Invalidity of one actigraphy brand for identifying sleep and wake among infants.
    Insana SP; Gozal D; Montgomery-Downs HE
    Sleep Med; 2010 Feb; 11(2):191-6. PubMed ID: 20083430
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Low-dose repeated caffeine administration for circadian-phase-dependent performance degradation during extended wakefulness.
    Wyatt JK; Cajochen C; Ritz-De Cecco A; Czeisler CA; Dijk DJ
    Sleep; 2004 May; 27(3):374-81. PubMed ID: 15164887
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Non-constraining sleep/wake monitoring system using bed actigraphy.
    Choi BH; Seo JW; Choi JM; Shin HB; Lee JY; Jeong DU; Park KS
    Med Biol Eng Comput; 2007 Jan; 45(1):107-14. PubMed ID: 17146691
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Actigraphy in older adults: comparison of means and variability of three different aggregates of measurement.
    Rowe M; McCrae C; Campbell J; Horne C; Tiegs T; Lehman B; Cheng J
    Behav Sleep Med; 2008; 6(2):127-45. PubMed ID: 18443950
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A comparison of agreement between actigraphy and polysomnography for assessing sleep during posttraumatic amnesia.
    Fedele B; McKenzie D; Williams G; Giles R; Olver J
    J Clin Sleep Med; 2022 Nov; 18(11):2605-2616. PubMed ID: 35912692
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Validation of actigraphy for determining sleep and wake in preterm infants.
    Sung M; Adamson TM; Horne RS
    Acta Paediatr; 2009 Jan; 98(1):52-7. PubMed ID: 18754828
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel machine learning unsupervised algorithm for sleep/wake identification using actigraphy.
    Li X; Zhang Y; Jiang F; Zhao H
    Chronobiol Int; 2020 Jul; 37(7):1002-1015. PubMed ID: 32342702
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of actigraphy and polysomnography to assess effects of zolpidem in a clinical research unit.
    Peterson BT; Chiao P; Pickering E; Freeman J; Zammit GK; Ding Y; Badura LL
    Sleep Med; 2012 Apr; 13(4):419-24. PubMed ID: 22317945
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of actigraphy in sleep medicine.
    Sadeh A; Acebo C
    Sleep Med Rev; 2002 Apr; 6(2):113-24. PubMed ID: 12531147
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Automatic sleep/wake scoring from body motion in bed: validation of a newly developed sensor placed under a mattress.
    Kogure T; Shirakawa S; Shimokawa M; Hosokawa Y
    J Physiol Anthropol; 2011; 30(3):103-9. PubMed ID: 21636953
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Couples' nighttime sleep efficiency and concordance: evidence for bidirectional associations with daytime relationship functioning.
    Hasler BP; Troxel WM
    Psychosom Med; 2010 Oct; 72(8):794-801. PubMed ID: 20668283
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Validity of activity-based devices to estimate sleep.
    Weiss AR; Johnson NL; Berger NA; Redline S
    J Clin Sleep Med; 2010 Aug; 6(4):336-42. PubMed ID: 20726281
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The measurement of sleep by actigraphy: direct comparison of 2 commercially available actigraphs in a nonclinical population.
    Benson K; Friedman L; Noda A; Wicks D; Wakabayashi E; Yesavage J
    Sleep; 2004 Aug; 27(5):986-9. PubMed ID: 15453559
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Validation of Zulu Watch against Polysomnography and Actigraphy for On-Wrist Sleep-Wake Determination and Sleep-Depth Estimation.
    Devine JK; Chinoy ED; Markwald RR; Schwartz LP; Hursh SR
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375557
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Utility of the Fitbit Flex to evaluate sleep in major depressive disorder: A comparison against polysomnography and wrist-worn actigraphy.
    Cook JD; Prairie ML; Plante DT
    J Affect Disord; 2017 Aug; 217():299-305. PubMed ID: 28448949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.