BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 17969685)

  • 1. Elucidating differences in the sorption properties of 10 humic and fulvic acids for polar and nonpolar organic chemicals.
    Niederer C; Schwarzenbach RP; Goss KU
    Environ Sci Technol; 2007 Oct; 41(19):6711-7. PubMed ID: 17969685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption equilibrium of a wide spectrum of organic vapors in Leonardite humic acid: modeling of experimental data.
    Niederer C; Goss KU; Schwarzenbach RP
    Environ Sci Technol; 2006 Sep; 40(17):5374-9. PubMed ID: 16999113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydration of natural organic matter: effect on sorption of organic compounds by humin and humic acid fractions vs original peat material.
    Borisover M; Graber ER
    Environ Sci Technol; 2004 Aug; 38(15):4120-9. PubMed ID: 15352450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating dissolved organic carbon-water partitioning using polyparameter linear free energy relationships: Implications for the fate of disinfection by-products.
    Neale PA; Escher BI; Goss KU; Endo S
    Water Res; 2012 Jul; 46(11):3637-45. PubMed ID: 22542133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorption equilibrium of a wide spectrum of organic vapors in Leonardite humic acid: experimental setup and experimental data.
    Niederer C; Goss KU; Schwarzenbach RP
    Environ Sci Technol; 2006 Sep; 40(17):5368-73. PubMed ID: 16999112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic role of different soil components in slow sorption kinetics of polar organic contaminants.
    Zhang D; Hou L; Zhu D; Chen W
    Environ Pollut; 2014 Jan; 184():123-30. PubMed ID: 24047548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydration-influenced sorption of organic compounds by model and atmospheric humic-like substances (HULIS).
    Taraniuk I; Rudich Y; Graber ER
    Environ Sci Technol; 2009 Mar; 43(6):1811-7. PubMed ID: 19368176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of chemical oxidation on the sorption tendency of dissolved organic matter to a model hydrophobic surface.
    Zeng T; Wilson CJ; Mitch WA
    Environ Sci Technol; 2014 May; 48(9):5118-26. PubMed ID: 24697505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complexes of the antimicrobial ciprofloxacin with soil, peat, and aquatic humic substances.
    Aristilde L; Sposito G
    Environ Toxicol Chem; 2013 Jul; 32(7):1467-78. PubMed ID: 23456646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LFERs for soil organic carbon-water distribution coefficients (Koc) at environmentally relevant sorbate concentrations.
    Endo S; Grathwohl P; Haderlein SB; Schmidt TC
    Environ Sci Technol; 2009 May; 43(9):3094-100. PubMed ID: 19534119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyparameter linear free energy relationships for estimating the equilibrium partition of organic compounds between water and the natural organic matter in soils and sediments.
    Nguyen TH; Goss KU; Ball WP
    Environ Sci Technol; 2005 Feb; 39(4):913-24. PubMed ID: 15773462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption of organic chemicals to soil organic matter: influence of soil variability and pH dependence.
    Bronner G; Goss KU
    Environ Sci Technol; 2011 Feb; 45(4):1307-12. PubMed ID: 21194206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Apolar Compound Sorption to Aquatic Natural Organic Matter Accounting for Natural Organic Matter Hydrophobicity Using Aqueous Two-Phase Systems.
    Liu K; Fu H; Zhu D; Qu X
    Environ Sci Technol; 2019 Jul; 53(14):8127-8135. PubMed ID: 31264416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and exploration of an organic contaminant fate model using poly-parameter linear free energy relationships.
    Brown TN; Wania F
    Environ Sci Technol; 2009 Sep; 43(17):6676-83. PubMed ID: 19764234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental determination of polyparameter linear free energy relationship (pp-LFER) substance descriptors for pesticides and other contaminants: new measurements and recommendations.
    Stenzel A; Goss KU; Endo S
    Environ Sci Technol; 2013 Dec; 47(24):14204-14. PubMed ID: 24245575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear free energy relationships used to evaluate equilibrium partitioning of organic compounds.
    Goss KU; Schwarzenbach RP
    Environ Sci Technol; 2001 Jan; 35(1):1-9. PubMed ID: 11351988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of polyparameter linear free energy relationships in environmental chemistry.
    Endo S; Goss KU
    Environ Sci Technol; 2014 Nov; 48(21):12477-91. PubMed ID: 25280011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of natural organic matter on arsenic removal by modified granular natural siderite: Evidence of ternary complex formation by HPSEC-UV-ICP-MS.
    Li F; Guo H; Zhou X; Zhao K; Shen J; Liu F; Wei C
    Chemosphere; 2017 Feb; 168():777-785. PubMed ID: 27825711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. History-dependent sorption in humic acids and a lignite in the context of a polymer model for natural organic matter.
    Lu Y; Pignatello JJ
    Environ Sci Technol; 2004 Nov; 38(22):5853-62. PubMed ID: 15573582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A concentration-dependent multi-term linear free energy relationship for sorption of organic compounds to soils based on the hexadecane dilute-solution reference state.
    Zhu D; Pignatello JJ
    Environ Sci Technol; 2005 Nov; 39(22):8817-28. PubMed ID: 16323782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.