These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
375 related articles for article (PubMed ID: 17969693)
1. Monitoring rice nitrogen status using hyperspectral reflectance and artificial neural network. Yi QX; Huang JF; Wang FM; Wang XZ; Liu ZY Environ Sci Technol; 2007 Oct; 41(19):6770-5. PubMed ID: 17969693 [TBL] [Abstract][Full Text] [Related]
2. [Hyperspectral remote sensing diagnosis models of rice plant nitrogen nutritional status]. Tan CW; Zhou QB; Qi L; Zhuang HY Ying Yong Sheng Tai Xue Bao; 2008 Jun; 19(6):1261-8. PubMed ID: 18808018 [TBL] [Abstract][Full Text] [Related]
3. [Estimating the severity of rice brown spot disease based on principal component analysis and radial basis function neural network]. Liu ZY; Huang JF; Tao RX; Zhang HZ Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Sep; 28(9):2156-60. PubMed ID: 19093583 [TBL] [Abstract][Full Text] [Related]
4. Potential of spectral ratio indices derived from hyperspectral LiDAR and laser-induced chlorophyll fluorescence spectra on estimating rice leaf nitrogen contents. Du L; Shi S; Yang J; Wang W; Sun J; Cheng B; Zhang Z; Gong W Opt Express; 2017 Mar; 25(6):6539-6549. PubMed ID: 28381001 [TBL] [Abstract][Full Text] [Related]
5. Nitrogen contents of rice panicle and paddy by hyperspectral remote sensing. Tang YL; Huang JF; Cai SH; Wang RC Pak J Biol Sci; 2007 Dec; 10(24):4420-5. PubMed ID: 19093505 [TBL] [Abstract][Full Text] [Related]
6. Effect of fluorescence characteristics and different algorithms on the estimation of leaf nitrogen content based on laser-induced fluorescence lidar in paddy rice. Yang J; Sun J; Du L; Chen B; Zhang Z; Shi S; Gong W Opt Express; 2017 Feb; 25(4):3743-3755. PubMed ID: 28241586 [TBL] [Abstract][Full Text] [Related]
7. Assessing different regression algorithms for paddy rice leaf nitrogen concentration estimations from the first-derivative fluorescence spectrum. Yang J; Du L; Cheng Y; Shi S; Xiang C; Sun J; Chen B Opt Express; 2020 Jun; 28(13):18728-18741. PubMed ID: 32672167 [TBL] [Abstract][Full Text] [Related]
8. Estimating the leaf nitrogen content of paddy rice by using the combined reflectance and laser-induced fluorescence spectra. Yang J; Du L; Sun J; Zhang Z; Chen B; Shi S; Gong W; Song S Opt Express; 2016 Aug; 24(17):19354-65. PubMed ID: 27557214 [TBL] [Abstract][Full Text] [Related]
9. [Application of mutual information to variable selection in diagnosis of phosphorus nutrition in rice]. Lin FF; Ding XD; Fu ZP; Deng JS; Shen ZQ Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Sep; 29(9):2467-70. PubMed ID: 19950654 [TBL] [Abstract][Full Text] [Related]
10. [Estimating total nitrogen content in reclaimed water based on hyperspectral reflectance information from emergent plants: a case study of Mencheng Lake Wetland Park in Beijing, China]. Liu H; Gong ZN; Zhao WJ Ying Yong Sheng Tai Xue Bao; 2014 Dec; 25(12):3609-18. PubMed ID: 25876415 [TBL] [Abstract][Full Text] [Related]
11. Selecting optimal hyperspectral bands to discriminate nitrogen status in durum wheat: a comparison of statistical approaches. Stellacci AM; Castrignanò A; Troccoli A; Basso B; Buttafuoco G Environ Monit Assess; 2016 Mar; 188(3):199. PubMed ID: 26922749 [TBL] [Abstract][Full Text] [Related]
12. Quantifying biochemical variables of corn by hyperspectral reflectance at leaf scale. Yi QX; Huang JF; Wang FM; Wang XZ J Zhejiang Univ Sci B; 2008 May; 9(5):378-84. PubMed ID: 18500777 [TBL] [Abstract][Full Text] [Related]
13. Analyzing the performance of the first-derivative fluorescence spectrum for estimating leaf nitrogen concentration. Yang J; Du L; Gong W; Shi S; Sun J; Chen B Opt Express; 2019 Feb; 27(4):3978-3990. PubMed ID: 30876021 [TBL] [Abstract][Full Text] [Related]
14. ANN application for prediction of atmospheric nitrogen deposition to aquatic ecosystems. Palani S; Tkalich P; Balasubramanian R; Palanichamy J Mar Pollut Bull; 2011 Jun; 62(6):1198-206. PubMed ID: 21481425 [TBL] [Abstract][Full Text] [Related]
15. A Study of Nitrogen Deficiency Inversion in Rice Leaves Based on the Hyperspectral Reflectance Differential. Yu F; Feng S; Du W; Wang D; Guo Z; Xing S; Jin Z; Cao Y; Xu T Front Plant Sci; 2020; 11():573272. PubMed ID: 33343590 [TBL] [Abstract][Full Text] [Related]
16. [Development of prediction models for determining N content in citrus leaves based on hyperspectral imaging technology]. Li JM; Ye XJ; Wang QN; Zhang C; He Y Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jan; 34(1):212-6. PubMed ID: 24783563 [TBL] [Abstract][Full Text] [Related]
17. Estimating biophysical parameters of rice with remote sensing data using support vector machines. Yang X; Huang J; Wu Y; Wang J; Wang P; Wang X; Huete AR Sci China Life Sci; 2011 Mar; 54(3):272-81. PubMed ID: 21416328 [TBL] [Abstract][Full Text] [Related]
18. Predicting Spatial Variations in Soil Nutrients with Hyperspectral Remote Sensing at Regional Scale. Song YQ; Zhao X; Su HY; Li B; Hu YM; Cui XS Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30217092 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of multiple linear, neural network and penalised regression models for prediction of rice yield based on weather parameters for west coast of India. Das B; Nair B; Reddy VK; Venkatesh P Int J Biometeorol; 2018 Oct; 62(10):1809-1822. PubMed ID: 30043218 [TBL] [Abstract][Full Text] [Related]
20. Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network. Cho KH; Sthiannopkao S; Pachepsky YA; Kim KW; Kim JH Water Res; 2011 Nov; 45(17):5535-44. PubMed ID: 21917287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]