These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 17970225)

  • 1. Drug targets in mycobacterial sulfur metabolism.
    Bhave DP; Muse WB; Carroll KS
    Infect Disord Drug Targets; 2007 Jun; 7(2):140-58. PubMed ID: 17970225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New targets and inhibitors of mycobacterial sulfur metabolism.
    Paritala H; Carroll KS
    Infect Disord Drug Targets; 2013 Apr; 13(2):85-115. PubMed ID: 23808874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mycobacterium sulfur metabolism and implications for novel drug targets.
    Zeng L; Shi T; Zhao Q; Xie J
    Cell Biochem Biophys; 2013 Mar; 65(2):77-83. PubMed ID: 23054909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mycothiol: a target for potentiation of rifampin and other antibiotics against Mycobacterium tuberculosis.
    Hernick M
    Expert Rev Anti Infect Ther; 2013 Jan; 11(1):49-67. PubMed ID: 23428102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional demonstration of reverse transsulfuration in the Mycobacterium tuberculosis complex reveals that methionine is the preferred sulfur source for pathogenic Mycobacteria.
    Wheeler PR; Coldham NG; Keating L; Gordon SV; Wooff EE; Parish T; Hewinson RG
    J Biol Chem; 2005 Mar; 280(9):8069-78. PubMed ID: 15576367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of sulfated metabolites in mycobacteria with a genetic and mass spectrometric approach.
    Mougous JD; Leavell MD; Senaratne RH; Leigh CD; Williams SJ; Riley LW; Leary JA; Bertozzi CR
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):17037-42. PubMed ID: 12482950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small organic molecules targeting the energy metabolism of Mycobacterium tuberculosis.
    Urban M; Šlachtová V; Brulíková L
    Eur J Med Chem; 2021 Feb; 212():113139. PubMed ID: 33422979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-in-Class Inhibitors of Sulfur Metabolism with Bactericidal Activity against Non-Replicating M. tuberculosis.
    Palde PB; Bhaskar A; Pedró Rosa LE; Madoux F; Chase P; Gupta V; Spicer T; Scampavia L; Singh A; Carroll KS
    ACS Chem Biol; 2016 Jan; 11(1):172-84. PubMed ID: 26524379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipolytic enzymes inhibitors: A new way for antibacterial drugs discovery.
    Cavalier JF; Spilling CD; Durand T; Camoin L; Canaan S
    Eur J Med Chem; 2021 Jan; 209():112908. PubMed ID: 33071055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting Energy Metabolism in
    Bald D; Villellas C; Lu P; Koul A
    mBio; 2017 Apr; 8(2):. PubMed ID: 28400527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of low molecular weight thiols in Mycobacterium tuberculosis.
    Sao Emani C; Gallant JL; Wiid IJ; Baker B
    Tuberculosis (Edinb); 2019 May; 116():44-55. PubMed ID: 31153518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Research on the sulfoconjugation of indole. VI. The utilization of the sulfur in methionine and in cysteine and the non-utilization of the sulfur in mineral sulfates by the adult rat in vivo].
    WELLERS G; BOELLE G
    Arch Int Physiol Biochim; 1960 Mar; 68():299-313. PubMed ID: 13843862
    [No Abstract]   [Full Text] [Related]  

  • 14. Application of genetically encoded redox biosensors to measure dynamic changes in the glutathione, bacillithiol and mycothiol redox potentials in pathogenic bacteria.
    Tung QN; Linzner N; Loi VV; Antelmann H
    Free Radic Biol Med; 2018 Nov; 128():84-96. PubMed ID: 29454879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ergothioneine Maintains Redox and Bioenergetic Homeostasis Essential for Drug Susceptibility and Virulence of Mycobacterium tuberculosis.
    Saini V; Cumming BM; Guidry L; Lamprecht DA; Adamson JH; Reddy VP; Chinta KC; Mazorodze JH; Glasgow JN; Richard-Greenblatt M; Gomez-Velasco A; Bach H; Av-Gay Y; Eoh H; Rhee K; Steyn AJC
    Cell Rep; 2016 Jan; 14(3):572-585. PubMed ID: 26774486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mycothiol: a promising antitubercular target.
    Nilewar SS; Kathiravan MK
    Bioorg Chem; 2014 Feb; 52():62-8. PubMed ID: 24368170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural enzymology of sulphur metabolism in Mycobacterium tuberculosis.
    Schnell R; Schneider G
    Biochem Biophys Res Commun; 2010 May; 396(1):33-8. PubMed ID: 20494107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current Advances in Antitubercular Drug Discovery: Potent Prototypes and New Targets.
    Dos Santos Fernandes GF; Jornada DH; de Souza PC; Chin CM; Pavan FR; Dos Santos JL
    Curr Med Chem; 2015; 22(27):3133-61. PubMed ID: 26282941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A piperidinol-containing molecule is active against
    Dupont C; Chen Y; Xu Z; Roquet-Banères F; Blaise M; Witt AK; Dubar F; Biot C; Guérardel Y; Maurer FP; Chng SS; Kremer L
    J Biol Chem; 2019 Nov; 294(46):17512-17523. PubMed ID: 31562241
    [No Abstract]   [Full Text] [Related]  

  • 20. Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development.
    Bailo R; Bhatt A; Aínsa JA
    Biochem Pharmacol; 2015 Aug; 96(3):159-67. PubMed ID: 25986884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.