BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 17970590)

  • 1. Main antimicrobial compounds in table olives.
    Medina E; Brenes M; Romero C; García A; de Castro A
    J Agric Food Chem; 2007 Nov; 55(24):9817-23. PubMed ID: 17970590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitors of lactic acid fermentation in Spanish-style green olive brines of the Manzanilla variety.
    Medina E; Romero C; de Castro A; Brenes M; García A
    Food Chem; 2008 Oct; 110(4):932-7. PubMed ID: 26047282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of Lactobacillus pentosus 1MO to shorten the debittering process time of black table olives (Cv. Itrana and Leccino): a pilot-scale application.
    Servili M; Settanni L; Veneziani G; Esposto S; Massitti O; Taticchi A; Urbani S; Montedoro GF; Corsetti A
    J Agric Food Chem; 2006 May; 54(11):3869-75. PubMed ID: 16719508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria.
    Panagou EZ; Schillinger U; Franz CM; Nychas GJ
    Food Microbiol; 2008 Apr; 25(2):348-58. PubMed ID: 18206777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of cultivar and processing method on the contents of polyphenols in table olives.
    Romero C; Brenes M; Yousfi K; García P; García A; Garrido A
    J Agric Food Chem; 2004 Feb; 52(3):479-84. PubMed ID: 14759136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyphenol changes during fermentation of naturally black olives.
    Romero C; Brenes M; García P; García A; Garrido A
    J Agric Food Chem; 2004 Apr; 52(7):1973-9. PubMed ID: 15053538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors influencing phenolic compounds in table olives (Olea europaea).
    Charoenprasert S; Mitchell A
    J Agric Food Chem; 2012 Jul; 60(29):7081-95. PubMed ID: 22720792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Throuba Thassos, a traditional Greek table olive variety, as a nutritional rich source of oleuropein.
    Zoidou E; Melliou E; Gikas E; Tsarbopoulos A; Magiatis P; Skaltsounis AL
    J Agric Food Chem; 2010 Jan; 58(1):46-50. PubMed ID: 19957933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compositional and tissue modifications induced by the natural fermentation process in table olives.
    Servili M; Minnocci A; Veneziani G; Taticchi A; Urbani S; Esposto S; Sebastiani L; Valmorri S; Corsetti A
    J Agric Food Chem; 2008 Aug; 56(15):6389-96. PubMed ID: 18636682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in volatile compounds and related biochemical profile during controlled fermentation of cv. Conservolea green olives.
    Panagou EZ; Tassou CC
    Food Microbiol; 2006 Dec; 23(8):738-46. PubMed ID: 16943076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of antioxidant olive oil biophenols by spectroscopic methods.
    Paiva-Martins F; Rodrigues V; Calheiros R; Marques MP
    J Sci Food Agric; 2011 Jan; 91(2):309-14. PubMed ID: 20949551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunisian table olive phenolic compounds and their antioxidant capacity.
    Ben Othman N; Roblain D; Thonart P; Hamdi M
    J Food Sci; 2008 May; 73(4):C235-40. PubMed ID: 18460116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of different inoculation strategies of selected yeast and LAB cultures on Conservolea and Kalamàta table olives considering phenol content, texture, and sensory attributes.
    Chytiri A; Tasioula-Margari M; Bleve G; Kontogianni VG; Kallimanis A; Kontominas MG
    J Sci Food Agric; 2020 Feb; 100(3):926-935. PubMed ID: 31523827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capillary electrophoresis-electrospray ionization-mass spectrometry method to determine the phenolic fraction of extra-virgin olive oil.
    Carrasco-Pancorbo A; Arráez-Román D; Segura-Carretero A; Fernández-Gutiérrez A
    Electrophoresis; 2006 Jun; 27(11):2182-96. PubMed ID: 16736455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oleuropein hydrolysis in natural green olives: Importance of the endogenous enzymes.
    Ramírez E; Brenes M; García P; Medina E; Romero C
    Food Chem; 2016 Sep; 206():204-9. PubMed ID: 27041317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the influence of thermal oxidation on the phenolic composition and on the antioxidant activity of extra-virgin olive oils.
    Carrasco-Pancorbo A; Cerretani L; Bendini A; Segura-Carretero A; Lercker G; Fernández-Gutiérrez A
    J Agric Food Chem; 2007 Jun; 55(12):4771-80. PubMed ID: 17497881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined effect of starter culture and temperature on phenolic compounds during fermentation of Taggiasca black olives.
    Pistarino E; Aliakbarian B; Casazza AA; Paini M; Cosulich ME; Perego P
    Food Chem; 2013 Jun; 138(2-3):2043-9. PubMed ID: 23411341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HPLC analysis of oleuropein, hydroxytyrosol, and tyrosol in stems and roots of Olea europaea L. cv. Picual during ripening.
    Ortega-García F; Peragón J
    J Sci Food Agric; 2010 Oct; 90(13):2295-300. PubMed ID: 20648529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrahigh-pressure liquid chromatography triple-quadrupole tandem mass spectrometry quantitation of polyphenols and secoiridoids in california-style black ripe olives and dry salt-cured olives.
    Melliou E; Zweigenbaum JA; Mitchell AE
    J Agric Food Chem; 2015 Mar; 63(9):2400-5. PubMed ID: 25668132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reuse of ozonated alkaline solutions as fermentation brines in Spanish green table olives.
    Segovia-Bravo KA; Arroyo-López FN; García-García P; Durán-Quintana MC; Garrido-Fernández A
    J Food Sci; 2007 May; 72(4):M126-33. PubMed ID: 17995780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.