These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 17970914)

  • 1. Characterization of spectral FRET imaging microscopy for monitoring nuclear protein interactions.
    Chen Y; Mauldin JP; Day RN; Periasamy A
    J Microsc; 2007 Nov; 228(Pt 2):139-52. PubMed ID: 17970914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additional correction for energy transfer efficiency calculation in filter-based Forster resonance energy transfer microscopy for more accurate results.
    Sun Y; Periasamy A
    J Biomed Opt; 2010; 15(2):020513. PubMed ID: 20459222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intensity range based quantitative FRET data analysis to localize protein molecules in live cell nuclei.
    Chen Y; Periasamy A
    J Fluoresc; 2006 Jan; 16(1):95-104. PubMed ID: 16397825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Förster resonance energy transfer efficiency measurements using simultaneous spectral unmixing of excitation and emission spectra.
    Mustafa S; Hannagan J; Rigby P; Pfleger K; Corry B
    J Biomed Opt; 2013 Feb; 18(2):26024. PubMed ID: 23423332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence resonance energy transfer-based stoichiometry in living cells.
    Hoppe A; Christensen K; Swanson JA
    Biophys J; 2002 Dec; 83(6):3652-64. PubMed ID: 12496132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic approach for monitoring two-photon excited fluorescence resonance energy transfer from homodimers at the subcellular level.
    LaMorte VJ; Zoumi A; Tromberg BJ
    J Biomed Opt; 2003 Jul; 8(3):357-61. PubMed ID: 12880339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy.
    Elangovan M; Wallrabe H; Chen Y; Day RN; Barroso M; Periasamy A
    Methods; 2003 Jan; 29(1):58-73. PubMed ID: 12543072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of Pit-1 transcription factor interactions in the living cell nucleus by fluorescence resonance energy transfer microscopy.
    Day RN
    Mol Endocrinol; 1998 Sep; 12(9):1410-9. PubMed ID: 9731708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative fluorescence resonance energy transfer (FRET) measurement with acceptor photobleaching and spectral unmixing.
    Gu Y; Di WL; Kelsell DP; Zicha D
    J Microsc; 2004 Aug; 215(Pt 2):162-73. PubMed ID: 15315503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-color spectral FRET microscopy localizes three interacting proteins in living cells.
    Sun Y; Wallrabe H; Booker CF; Day RN; Periasamy A
    Biophys J; 2010 Aug; 99(4):1274-83. PubMed ID: 20713013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chapter 22: Quantitation of protein-protein interactions: confocal FRET microscopy.
    Periasamy A; Wallrabe H; Chen Y; Barroso M
    Methods Cell Biol; 2008; 89():569-98. PubMed ID: 19118691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization.
    Chen Y; Periasamy A
    Microsc Res Tech; 2004 Jan; 63(1):72-80. PubMed ID: 14677136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative FRET measurement using emission-spectral unmixing with independent excitation crosstalk correction.
    Zhang J; Li H; Chai L; Zhang L; Qu J; Chen T
    J Microsc; 2015 Feb; 257(2):104-16. PubMed ID: 25354559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing FRET using spectral techniques.
    Leavesley SJ; Britain AL; Cichon LK; Nikolaev VO; Rich TC
    Cytometry A; 2013 Oct; 83(10):898-912. PubMed ID: 23929684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring dynamic protein interactions with photoquenching FRET.
    Demarco IA; Periasamy A; Booker CF; Day RN
    Nat Methods; 2006 Jul; 3(7):519-24. PubMed ID: 16791209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of FRET signals in the presence of free donors and acceptors.
    Wlodarczyk J; Woehler A; Kobe F; Ponimaskin E; Zeug A; Neher E
    Biophys J; 2008 Feb; 94(3):986-1000. PubMed ID: 17921223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues.
    Xu X; Soutto M; Xie Q; Servick S; Subramanian C; von Arnim AG; Johnson CH
    Proc Natl Acad Sci U S A; 2007 Jun; 104(24):10264-9. PubMed ID: 17551013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.