BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

536 related articles for article (PubMed ID: 17970923)

  • 1. A line-scanning semi-confocal multi-photon fluorescence microscope with a simultaneous broadband spectral acquisition and its application to the study of the thylakoid membrane of a cyanobacterium Anabaena PCC7120.
    Kumazaki S; Hasegawa M; Ghoneim M; Shimizu Y; Okamoto K; Nishiyama M; Oh-Oka H; Terazima M
    J Microsc; 2007 Nov; 228(Pt 2):240-54. PubMed ID: 17970923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D resolved two-photon fluorescence microscopy of living cells using a modified confocal laser scanning microscope.
    König K; Simon U; Halbhuber KJ
    Cell Mol Biol (Noisy-le-grand); 1996 Dec; 42(8):1181-94. PubMed ID: 8997522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adapting a compact confocal microscope system to a two-photon excitation fluorescence imaging architecture.
    Diaspro A; Corosu M; Ramoino P; Robello M
    Microsc Res Tech; 1999 Nov; 47(3):196-205. PubMed ID: 10544334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam.
    Boruah BR; Neil MA
    Rev Sci Instrum; 2009 Jan; 80(1):013705. PubMed ID: 19191439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of multiline two-photon microscopy to functional in vivo imaging.
    Kurtz R; Fricke M; Kalb J; Tinnefeld P; Sauer M
    J Neurosci Methods; 2006 Mar; 151(2):276-86. PubMed ID: 16442636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Photosystem I and Photosystem II enriched regions of thylakoid membrane by optical microimaging of cryo-fluorescence emission spectra and of variable fluorescence.
    Vácha F; Sarafis V; Benediktyová Z; Bumba L; Valenta J; Vácha M; Sheue ChR; Nedbal L
    Micron; 2007; 38(2):170-5. PubMed ID: 16962333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new UV-visible confocal laser scanning microspectrofluorometer designed for spectral cellular imaging.
    Favard C; Valisa P; Egret-Charlier M; Sharonov S; Herben C; Manfait M; Da Silva E; Vigny P
    Biospectroscopy; 1999; 5(2):101-15. PubMed ID: 10217329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution simultaneous three-photon fluorescence and third-harmonic-generation microscopy.
    Chu SW; Tai SP; Ho CL; Lin CH; Sun CK
    Microsc Res Tech; 2005 Mar; 66(4):193-7. PubMed ID: 15889423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of near-infrared 35 fs laser microscope and its application to the detection of three- and four-photon fluorescence of organic microcrystals.
    Matsuda H; Fujimoto Y; Ito S; Nagasawa Y; Miyasaka H; Asahi T; Masuhara H
    J Phys Chem B; 2006 Jan; 110(3):1091-4. PubMed ID: 16471646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined AFM and confocal fluorescence microscope for applications in bio-nanotechnology.
    Kassies R; van der Werf KO; Lenferink A; Hunter CN; Olsen JD; Subramaniam V; Otto C
    J Microsc; 2005 Jan; 217(Pt 1):109-16. PubMed ID: 15655068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of a two-photon microscope for video-rate Ca(2+) imaging.
    Nguyen QT; Callamaras N; Hsieh C; Parker I
    Cell Calcium; 2001 Dec; 30(6):383-93. PubMed ID: 11728133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of the thylakoid membranes from the NaCl-resistant (NaCl(r)) mutant strain of the cyanobacterium Anabaena variabilis.
    Chauhan VS; Singh B; Singh S; Gour RK; Bisen PS
    Curr Microbiol; 2000 Nov; 41(5):321-7. PubMed ID: 11014868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An evaluation of two-photon excitation versus confocal and digital deconvolution fluorescence microscopy imaging in Xenopus morphogenesis.
    Periasamy A; Skoglund P; Noakes C; Keller R
    Microsc Res Tech; 1999 Nov; 47(3):172-81. PubMed ID: 10544332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence lifetime imaging by time-correlated single-photon counting.
    Becker W; Bergmann A; Hink MA; König K; Benndorf K; Biskup C
    Microsc Res Tech; 2004 Jan; 63(1):58-66. PubMed ID: 14677134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-photon excited lifetime imaging of autofluorescence in cells during UVA and NIR photostress.
    König K; So PT; Mantulin WW; Tromberg BJ; Gratton E
    J Microsc; 1996 Sep; 183(Pt 3):197-204. PubMed ID: 8858857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of a confocal microscope for real-time x-y and x-z imaging.
    Callamaras N; Parker I
    Cell Calcium; 1999 Dec; 26(6):271-9. PubMed ID: 10668565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Nikon C1si combines high spectral resolution, high sensitivity, and high acquisition speed.
    Larson JM
    Cytometry A; 2006 Aug; 69(8):825-34. PubMed ID: 16969806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An excitation wavelength-scanning spectral imaging system for preclinical imaging.
    Leavesley S; Jiang Y; Patsekin V; Rajwa B; Robinson JP
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023707. PubMed ID: 18315305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Second harmonic imaging of chloroplasts using the two-photon laser scanning microscope.
    Reshak AH; Sarafis V; Heintzmann R
    Micron; 2009 Apr; 40(3):378-85. PubMed ID: 19026555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous atomic-force and two-photon fluorescence imaging of biological specimens in vivo.
    Gradinaru CC; Martinsson P; Aartsma TJ; Schmidt T
    Ultramicroscopy; 2004 Jun; 99(4):235-45. PubMed ID: 15149718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.