These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 17971058)
1. An artificial neural network model of orienting attention toward threatening somatosensory stimuli. Dowman R; Ben-Avraham D Psychophysiology; 2008 Mar; 45(2):229-39. PubMed ID: 17971058 [TBL] [Abstract][Full Text] [Related]
2. Neural mechanisms of detecting and orienting attention toward unattended threatening somatosensory target stimuli. II. Intensity effects. Dowman R Psychophysiology; 2007 May; 44(3):420-30. PubMed ID: 17371499 [TBL] [Abstract][Full Text] [Related]
3. Neural mechanisms of detecting and orienting attention toward unattended threatening somatosensory targets. I. Intermodal effects. Dowman R Psychophysiology; 2007 May; 44(3):407-19. PubMed ID: 17371498 [TBL] [Abstract][Full Text] [Related]
4. The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. Hamker FH Cereb Cortex; 2005 Apr; 15(4):431-47. PubMed ID: 15749987 [TBL] [Abstract][Full Text] [Related]
5. Electrophysiological indices of orienting attention toward pain. Dowman R Psychophysiology; 2004 Sep; 41(5):749-61. PubMed ID: 15318881 [TBL] [Abstract][Full Text] [Related]
6. Anxiety and spatial attention moderate the electrocortical response to aversive pictures. MacNamara A; Hajcak G Neuropsychologia; 2009 Nov; 47(13):2975-80. PubMed ID: 19576234 [TBL] [Abstract][Full Text] [Related]
7. Human secondary somatosensory cortex is involved in the processing of somatosensory rare stimuli: an fMRI study. Chen TL; Babiloni C; Ferretti A; Perrucci MG; Romani GL; Rossini PM; Tartaro A; Del Gratta C Neuroimage; 2008 May; 40(4):1765-71. PubMed ID: 18329293 [TBL] [Abstract][Full Text] [Related]
9. Conversation effects on neural mechanisms underlying reaction time to visual events while viewing a driving scene: fMRI analysis and asynchrony model. Hsieh L; Young RA; Bowyer SM; Moran JE; Genik RJ; Green CC; Chiang YR; Yu YJ; Liao CC; Seaman S Brain Res; 2009 Jan; 1251():162-75. PubMed ID: 18952070 [TBL] [Abstract][Full Text] [Related]
10. [Orienting reflex: "targeting reaction" and "searchlight of attention"]. Sokolov EN; Nezlina NI; Polianskiĭ VB; Evtikhin DV Zh Vyssh Nerv Deiat Im I P Pavlova; 2001; 51(4):421-37. PubMed ID: 11605420 [TBL] [Abstract][Full Text] [Related]
11. Flexible control of mutual inhibition: a neural model of two-interval discrimination. Machens CK; Romo R; Brody CD Science; 2005 Feb; 307(5712):1121-4. PubMed ID: 15718474 [TBL] [Abstract][Full Text] [Related]
12. Neural correlates of spatial and non-spatial inhibition of return (IOR) in attentional orienting. Zhou X; Chen Q Neuropsychologia; 2008 Sep; 46(11):2766-75. PubMed ID: 18597795 [TBL] [Abstract][Full Text] [Related]
13. Shift of attention to the body location of distracters is mediated by perceptual load in sustained somatosensory attention. Adler J; Giabbiconi CM; Müller MM Biol Psychol; 2009 May; 81(2):77-85. PubMed ID: 19428971 [TBL] [Abstract][Full Text] [Related]
14. Interval timers and coupled oscillators both mediate the effect of temporally structured cueing. Martin T; Houck JM; Kicić D; Tesche CD Neuroimage; 2008 May; 40(4):1798-806. PubMed ID: 18313944 [TBL] [Abstract][Full Text] [Related]
15. Instructed delay discharge in primary and secondary somatosensory cortex within the context of a selective attention task. Meftah el-M; Bourgeon S; Chapman CE J Neurophysiol; 2009 May; 101(5):2649-67. PubMed ID: 19225170 [TBL] [Abstract][Full Text] [Related]
17. When and where perceptual load interacts with voluntary visuospatial attention: an event-related potential and dipole modeling study. Fu S; Zinni M; Squire PN; Kumar R; Caggiano DM; Parasuraman R Neuroimage; 2008 Feb; 39(3):1345-55. PubMed ID: 18006335 [TBL] [Abstract][Full Text] [Related]
18. Condition-dependent and condition-independent target selection in the macaque posterior parietal cortex. Ogawa T; Komatsu H J Neurophysiol; 2009 Feb; 101(2):721-36. PubMed ID: 19073809 [TBL] [Abstract][Full Text] [Related]
19. Learning and production of movement sequences: behavioral, neurophysiological, and modeling perspectives. Rhodes BJ; Bullock D; Verwey WB; Averbeck BB; Page MP Hum Mov Sci; 2004 Nov; 23(5):699-746. PubMed ID: 15589629 [TBL] [Abstract][Full Text] [Related]
20. Cognitive control after distraction: event-related brain potentials (ERPs) dissociate between different processes of attentional allocation. Berti S Psychophysiology; 2008 Jul; 45(4):608-20. PubMed ID: 18346043 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]