These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 17971207)
21. Sclerostin inhibition of Wnt-3a-induced C3H10T1/2 cell differentiation is indirect and mediated by bone morphogenetic proteins. Winkler DG; Sutherland MS; Ojala E; Turcott E; Geoghegan JC; Shpektor D; Skonier JE; Yu C; Latham JA J Biol Chem; 2005 Jan; 280(4):2498-502. PubMed ID: 15545262 [TBL] [Abstract][Full Text] [Related]
22. Cajanolactone A from Liu S; Luo ZH; Ji GM; Guo W; Cai JZ; Fu LC; Zhou J; Hu YJ; Shen XL Molecules; 2019 Jan; 24(2):. PubMed ID: 30642055 [TBL] [Abstract][Full Text] [Related]
23. Regulation of osteoclast differentiation by fibroblast growth factor 2: stimulation of receptor activator of nuclear factor kappaB ligand/osteoclast differentiation factor expression in osteoblasts and inhibition of macrophage colony-stimulating factor function in osteoclast precursors. Chikazu D; Katagiri M; Ogasawara T; Ogata N; Shimoaka T; Takato T; Nakamura K; Kawaguchi H J Bone Miner Res; 2001 Nov; 16(11):2074-81. PubMed ID: 11697804 [TBL] [Abstract][Full Text] [Related]
24. DOK3 Modulates Bone Remodeling by Negatively Regulating Osteoclastogenesis and Positively Regulating Osteoblastogenesis. Cai X; Xing J; Long CL; Peng Q; Humphrey MB J Bone Miner Res; 2017 Nov; 32(11):2207-2218. PubMed ID: 28650106 [TBL] [Abstract][Full Text] [Related]
25. Treatment of OPG-deficient mice with WP9QY, a RANKL-binding peptide, recovers alveolar bone loss by suppressing osteoclastogenesis and enhancing osteoblastogenesis. Ozaki Y; Koide M; Furuya Y; Ninomiya T; Yasuda H; Nakamura M; Kobayashi Y; Takahashi N; Yoshinari N; Udagawa N PLoS One; 2017; 12(9):e0184904. PubMed ID: 28937990 [TBL] [Abstract][Full Text] [Related]
26. Wnt/β-catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts. Zhang R; Oyajobi BO; Harris SE; Chen D; Tsao C; Deng HW; Zhao M Bone; 2013 Jan; 52(1):145-56. PubMed ID: 23032104 [TBL] [Abstract][Full Text] [Related]
27. Kirenol stimulates osteoblast differentiation through activation of the BMP and Wnt/β-catenin signaling pathways in MC3T3-E1 cells. Kim MB; Song Y; Hwang JK Fitoterapia; 2014 Oct; 98():59-65. PubMed ID: 25062891 [TBL] [Abstract][Full Text] [Related]
28. Regulation of osteoclast development by Notch signaling directed to osteoclast precursors and through stromal cells. Yamada T; Yamazaki H; Yamane T; Yoshino M; Okuyama H; Tsuneto M; Kurino T; Hayashi S; Sakano S Blood; 2003 Mar; 101(6):2227-34. PubMed ID: 12411305 [TBL] [Abstract][Full Text] [Related]
29. Fibroblastic stromal cells express receptor activator of NF-kappa B ligand and support osteoclast differentiation. Quinn JM; Horwood NJ; Elliott J; Gillespie MT; Martin TJ J Bone Miner Res; 2000 Aug; 15(8):1459-66. PubMed ID: 10934644 [TBL] [Abstract][Full Text] [Related]
30. Naringin increases osteoprotegerin expression in fibroblasts from periprosthetic membrane by the Wnt/β-catenin signaling pathway. Yang C; Liu W; Zhang X; Zeng B; Qian Y J Orthop Surg Res; 2020 Dec; 15(1):600. PubMed ID: 33302980 [TBL] [Abstract][Full Text] [Related]
31. NF-kappaB inhibitor dehydroxymethylepoxyquinomicin suppresses osteoclastogenesis and expression of NFATc1 in mouse arthritis without affecting expression of RANKL, osteoprotegerin or macrophage colony-stimulating factor. Kubota T; Hoshino M; Aoki K; Ohya K; Komano Y; Nanki T; Miyasaka N; Umezawa K Arthritis Res Ther; 2007; 9(5):R97. PubMed ID: 17892600 [TBL] [Abstract][Full Text] [Related]
32. Osteoclast differentiation by RANKL and OPG signaling pathways. Udagawa N; Koide M; Nakamura M; Nakamichi Y; Yamashita T; Uehara S; Kobayashi Y; Furuya Y; Yasuda H; Fukuda C; Tsuda E J Bone Miner Metab; 2021 Jan; 39(1):19-26. PubMed ID: 33079279 [TBL] [Abstract][Full Text] [Related]
33. Bone and bone marrow pro-osteoclastogenic cytokines are up-regulated in osteoporosis fragility fractures. D'Amelio P; Roato I; D'Amico L; Veneziano L; Suman E; Sassi F; Bisignano G; Ferracini R; Gargiulo G; Castoldi F; Pescarmona GP; Isaia GC Osteoporos Int; 2011 Nov; 22(11):2869-77. PubMed ID: 21116815 [TBL] [Abstract][Full Text] [Related]
34. BMP-2 regulation of PTHrP and osteoclastogenic factors during osteoblast differentiation of C2C12 cells. Susperregui AR; Viñals F; Ho PW; Gillespie MT; Martin TJ; Ventura F J Cell Physiol; 2008 Jul; 216(1):144-52. PubMed ID: 18247361 [TBL] [Abstract][Full Text] [Related]
35. BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway. Kamiya N; Ye L; Kobayashi T; Mochida Y; Yamauchi M; Kronenberg HM; Feng JQ; Mishina Y Development; 2008 Nov; 135(22):3801-11. PubMed ID: 18927151 [TBL] [Abstract][Full Text] [Related]
36. Murine and chicken chondrocytes regulate osteoclastogenesis by producing RANKL in response to BMP2. Usui M; Xing L; Drissi H; Zuscik M; O'Keefe R; Chen D; Boyce BF J Bone Miner Res; 2008 Mar; 23(3):314-25. PubMed ID: 17967138 [TBL] [Abstract][Full Text] [Related]
37. GSK-3β inhibition suppresses instability-induced osteolysis by a dual action on osteoblast and osteoclast differentiation. Amirhosseini M; Madsen RV; Escott KJ; Bostrom MP; Ross FP; Fahlgren A J Cell Physiol; 2018 Mar; 233(3):2398-2408. PubMed ID: 28731198 [TBL] [Abstract][Full Text] [Related]
38. Wnt16 regulates osteoclast differentiation in conjunction with Wnt5a. Kobayashi Y; Thirukonda GJ; Nakamura Y; Koide M; Yamashita T; Uehara S; Kato H; Udagawa N; Takahashi N Biochem Biophys Res Commun; 2015 Aug; 463(4):1278-83. PubMed ID: 26093292 [TBL] [Abstract][Full Text] [Related]
39. Transforming growth factor beta affects osteoclast differentiation via direct and indirect actions. Quinn JM; Itoh K; Udagawa N; Hausler K; Yasuda H; Shima N; Mizuno A; Higashio K; Takahashi N; Suda T; Martin TJ; Gillespie MT J Bone Miner Res; 2001 Oct; 16(10):1787-94. PubMed ID: 11585342 [TBL] [Abstract][Full Text] [Related]
40. Interleukin-20 differentially regulates bone mesenchymal stem cell activities in RANKL-induced osteoclastogenesis through the OPG/RANKL/RANK axis and the NF-κB, MAPK and AKT signalling pathways. Meng B; Wu D; Cheng Y; Huang P; Liu Y; Gan L; Liu C; Cao Y Scand J Immunol; 2020 May; 91(5):e12874. PubMed ID: 32090353 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]