BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 17971252)

  • 41. Carbon dioxide contributes to the beneficial effect of pressurization in a portable hyperbaric chamber at high altitude.
    Imray CH; Clarke T; Forster PJ; Harvey TC; Hoar H; Walsh S; Wright AD;
    Clin Sci (Lond); 2001 Feb; 100(2):151-7. PubMed ID: 11171283
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of temperature correction of blood gas values on the accuracy of end-tidal carbon dioxide monitoring in children after cardiac surgery.
    Suominen PK; Stayer S; Wang W; Chang AC
    ASAIO J; 2007; 53(6):670-4. PubMed ID: 18043144
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A prospective, randomized clinical trial comparing two hyperbaric treatment protocols for carbon monoxide poisoning.
    Hampson NB; Dunford RG; Ross DE; Wreford-Brown CE
    Undersea Hyperb Med; 2006; 33(1):27-32. PubMed ID: 16602254
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Supplemental oxygen and hyperbaric treatment at high altitude: cardiac and respiratory response.
    Rodway GW; Windsor JS; Hart ND;
    Aviat Space Environ Med; 2007 Jun; 78(6):613-7. PubMed ID: 17571664
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Feasibility of cutaneous blood gas monitoring during exercise stress testing.
    Kentala E; Repo UK
    Ann Clin Res; 1984; 16(1):40-6. PubMed ID: 6430206
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pedicle musculocutaneous flap transplantation: prediction of final outcome by transcutaneous oxygen measurements in hyperbaric oxygen.
    Mathieu D; Neviere R; Pellerin P; Patenotre P; Wattel F
    Plast Reconstr Surg; 1993 Feb; 91(2):329-34. PubMed ID: 8430149
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transcutaneous carbon dioxide monitoring to avoid hypercapnia during complex catheter ablations: a feasibility study.
    Cantillon DJ; Keene LM; Hakim A; Spencer S; Petro J; Ludvik M; Schell D
    J Interv Card Electrophysiol; 2015 Sep; 43(3):307-11. PubMed ID: 25997689
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Longtime performance and reliability of two different PtcCO2 and SpO2 sensors in neonates.
    Bernet V; Döll C; Cannizzaro V; Ersch J; Frey B; Weiss M
    Paediatr Anaesth; 2008 Sep; 18(9):872-7. PubMed ID: 18768047
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Conjunctival oxygen tension. Testing oxygen tension measurement of the conjunctiva].
    Gellett SC; Hjortdal VE; Kirkegaard L; Sørensen T; Gottrup F
    Ugeskr Laeger; 1990 Jul; 152(28):2050-2. PubMed ID: 2368204
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transcutaneous measurement of partial pressure of oxygen and carbon dioxide.
    Franklin ML
    Respir Care Clin N Am; 1995 Sep; 1(1):119-31. PubMed ID: 9390854
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of sodium fluoride on the stability of human blood samples and blood gas measurements.
    Licht M
    Clin Biochem; 2005 Jan; 38(1):79-83. PubMed ID: 15607321
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Establishment of reference pressure of transcutaneous oxygen for the comparative evaluation of problem wounds.
    Dooley J; King G; Slade B
    Undersea Hyperb Med; 1997; 24(4):235-44. PubMed ID: 9444056
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Transcutaneous carbon dioxide and oxygen measurement in patients undergoing microlaryngosurgery with high frequency jet ventilation].
    Mizushima A; Nakamura A; Kawauchi Y; Miura K; Fujino S; Katashima S; Yamamoto M; Kamiyama Y
    Masui; 2002 Dec; 51(12):1331-5. PubMed ID: 12607268
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Use of transcutaneous pressure of oxygen in the evaluation of edematous wounds.
    Dooley J; Schirmer J; Slade B; Folden B
    Undersea Hyperb Med; 1996 Sep; 23(3):167-74. PubMed ID: 8931284
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prolonged spiking in the Emfit sensor in patients with sleep-disordered breathing is characterized by increase in transcutaneous carbon dioxide.
    Rauhala E; Himanen SL; Saastamoinen A; Polo O
    Physiol Meas; 2007 Oct; 28(10):1163-73. PubMed ID: 17906385
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The importance of direct measurements of arterial blood gases in drug-induced methemoglobinemia.
    Donovan DJ
    Heart Lung; 1978; 7(4):673. PubMed ID: 248376
    [No Abstract]   [Full Text] [Related]  

  • 57. [Sequential changes of various parameters of arterial blood samples].
    Munetomo M; Ishikawa S; Makita K
    Masui; 2002 Dec; 51(12):1352-4. PubMed ID: 12607272
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Operational use and patient care in the monoplace hyperbaric chamber.
    Weaver LK
    Respir Care Clin N Am; 1999 Mar; 5(1):51-92. PubMed ID: 10205813
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Investigation of arterial bloodgases at altitude using constant-flow oxygen masks.
    Hodgson WR; Wright RC; Nelson GC; Letchford T
    Aviat Space Environ Med; 1978 Jun; 49(6):829-36. PubMed ID: 656012
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of increased apparatus dead space and tidal volumes on carbon dioxide elimination and oxygen saturations in a low-flow anesthesia system.
    Enekvist BJ; Luttropp HH; Johansson A
    J Clin Anesth; 2008 May; 20(3):170-4. PubMed ID: 18502358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.