BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 17971342)

  • 1. Increasing Interaction of amygdalar afferents with GABAergic interneurons between birth and adulthood.
    Cunningham MG; Bhattacharyya S; Benes FM
    Cereb Cortex; 2008 Jul; 18(7):1529-35. PubMed ID: 17971342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amygdalo-cortical sprouting continues into early adulthood: implications for the development of normal and abnormal function during adolescence.
    Cunningham MG; Bhattacharyya S; Benes FM
    J Comp Neurol; 2002 Nov; 453(2):116-30. PubMed ID: 12373778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopamine-immunoreactive axon varicosities form nonrandom contacts with GABA-immunoreactive neurons of rat medial prefrontal cortex.
    Benes FM; Vincent SL; Molloy R
    Synapse; 1993 Dec; 15(4):285-95. PubMed ID: 8153876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct mechanisms of ethanol potentiation of local and paracapsular GABAergic synapses in the rat basolateral amygdala.
    Silberman Y; Shi L; Brunso-Bechtold JK; Weiner JL
    J Pharmacol Exp Ther; 2008 Jan; 324(1):251-60. PubMed ID: 17921186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amygdala input to medial prefrontal cortex (mPFC) in the rat: a light and electron microscope study.
    Bacon SJ; Headlam AJ; Gabbott PL; Smith AD
    Brain Res; 1996 May; 720(1-2):211-9. PubMed ID: 8782914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amygdala-dependent regulation of electrical properties of hippocampal interneurons in a model of schizophrenia.
    Gisabella B; Cunningham MG; Bolshakov VY; Benes FM
    Biol Psychiatry; 2009 Mar; 65(6):464-72. PubMed ID: 19027103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel rat medial prefrontal cortical slice preparation to investigate synaptic transmission from amygdala to layer V prelimbic pyramidal neurons.
    Orozco-Cabal L; Pollandt S; Liu J; Vergara L; Shinnick-Gallagher P; Gallagher JP
    J Neurosci Methods; 2006 Mar; 151(2):148-58. PubMed ID: 16154203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Afferents from the auditory thalamus synapse on inhibitory interneurons in the lateral nucleus of the amygdala.
    Woodson W; Farb CR; Ledoux JE
    Synapse; 2000 Nov; 38(2):124-37. PubMed ID: 11018786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroanatomical changes in the adult rat brain after neonatal lesion of the medial prefrontal cortex.
    Klein S; Koch M; Schwabe K
    Exp Neurol; 2008 Jan; 209(1):199-212. PubMed ID: 17967454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic patterns of colocalization of calbindin, parvalbumin and GABA in subpopulations of mouse basolateral amygdalar cells during development.
    Dávila JC; Olmos L; Legaz I; Medina L; Guirado S; Real MA
    J Chem Neuroanat; 2008 Jan; 35(1):67-76. PubMed ID: 17681450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructural organization of medial prefrontal inputs to the rhinal cortices.
    Apergis-Schoute J; Pinto A; Paré D
    Eur J Neurosci; 2006 Jul; 24(1):135-44. PubMed ID: 16800862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic connections between GABAergic elements and serotonergic terminals or projecting neurons in the ventrolateral orbital cortex.
    Huo FQ; Chen T; Lv BC; Wang J; Zhang T; Qu CL; Li YQ; Tang JS
    Cereb Cortex; 2009 Jun; 19(6):1263-72. PubMed ID: 18980950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between GABAergic interneurons migration and early neocortical network activity.
    de Lima AD; Gieseler A; Voigt T
    Dev Neurobiol; 2009 Feb 1-15; 69(2-3):105-23. PubMed ID: 19086030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rodent model of schizophrenia derived from postmortem studies.
    Berretta S; Gisabella B; Benes FM
    Behav Brain Res; 2009 Dec; 204(2):363-8. PubMed ID: 19539659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress reverses plasticity in the pathway projecting from the ventromedial prefrontal cortex to the basolateral amygdala.
    Maroun M
    Eur J Neurosci; 2006 Nov; 24(10):2917-22. PubMed ID: 17156214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thalamic Control of Cognition and Social Behavior Via Regulation of Gamma-Aminobutyric Acidergic Signaling and Excitation/Inhibition Balance in the Medial Prefrontal Cortex.
    Ferguson BR; Gao WJ
    Biol Psychiatry; 2018 Apr; 83(8):657-669. PubMed ID: 29373121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuron number decreases in the rat ventral, but not dorsal, medial prefrontal cortex between adolescence and adulthood.
    Markham JA; Morris JR; Juraska JM
    Neuroscience; 2007 Feb; 144(3):961-8. PubMed ID: 17137726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. α7-Containing nicotinic acetylcholine receptors on interneurons of the basolateral amygdala and their role in the regulation of the network excitability.
    Pidoplichko VI; Prager EM; Aroniadou-Anderjaska V; Braga MF
    J Neurophysiol; 2013 Nov; 110(10):2358-69. PubMed ID: 24004528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ventral hippocampal neurons project axons simultaneously to the medial prefrontal cortex and amygdala in the rat.
    Ishikawa A; Nakamura S
    J Neurophysiol; 2006 Oct; 96(4):2134-8. PubMed ID: 16837666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neonatal ventral hippocampus lesions disrupt extra-dimensional shift and alter dendritic spine density in the medial prefrontal cortex of juvenile rats.
    Marquis JP; Goulet S; Doré FY
    Neurobiol Learn Mem; 2008 Sep; 90(2):339-46. PubMed ID: 18490183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.