These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 17971437)

  • 1. High-resolution design of a protein loop.
    Hu X; Wang H; Ke H; Kuhlman B
    Proc Natl Acad Sci U S A; 2007 Nov; 104(45):17668-73. PubMed ID: 17971437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer-based redesign of a beta sandwich protein suggests that extensive negative design is not required for de novo beta sheet design.
    Hu X; Wang H; Ke H; Kuhlman B
    Structure; 2008 Dec; 16(12):1799-805. PubMed ID: 19081056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational dynamics in loop swap mutants of homologous fibronectin type III domains.
    Siggers K; Soto C; Palmer AG
    Biophys J; 2007 Oct; 93(7):2447-56. PubMed ID: 17526562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of a polyhistidine-tagged recombinant catalytic subunit of cAMP-dependent protein kinase complexed with the peptide inhibitor PKI(5-24) and adenosine.
    Narayana N; Cox S; Shaltiel S; Taylor SS; Xuong N
    Biochemistry; 1997 Apr; 36(15):4438-48. PubMed ID: 9109651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate computer-based design of a new backbone conformation in the second turn of protein L.
    Kuhlman B; O'Neill JW; Kim DE; Zhang KY; Baker D
    J Mol Biol; 2002 Jan; 315(3):471-7. PubMed ID: 11786026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein loop modeling using a new hybrid energy function and its application to modeling in inaccurate structural environments.
    Park H; Lee GR; Heo L; Seok C
    PLoS One; 2014; 9(11):e113811. PubMed ID: 25419655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling structurally variable regions in homologous proteins with rosetta.
    Rohl CA; Strauss CE; Chivian D; Baker D
    Proteins; 2004 May; 55(3):656-77. PubMed ID: 15103629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting protein stability with the computational design of β-sheet surfaces.
    Kim DN; Jacobs TM; Kuhlman B
    Protein Sci; 2016 Mar; 25(3):702-10. PubMed ID: 26701383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio computational modeling of loops in G-protein-coupled receptors: lessons from the crystal structure of rhodopsin.
    Mehler EL; Hassan SA; Kortagere S; Weinstein H
    Proteins; 2006 Aug; 64(3):673-90. PubMed ID: 16729264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward better refinement of comparative models: predicting loops in inexact environments.
    Sellers BD; Zhu K; Zhao S; Friesner RA; Jacobson MP
    Proteins; 2008 Aug; 72(3):959-71. PubMed ID: 18300241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution protein design with backbone freedom.
    Harbury PB; Plecs JJ; Tidor B; Alber T; Kim PS
    Science; 1998 Nov; 282(5393):1462-7. PubMed ID: 9822371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local interactions drive the formation of nonnative structure in the denatured state of human alpha-lactalbumin: a high resolution structural characterization of a peptide model in aqueous solution.
    Demarest SJ; Hua Y; Raleigh DP
    Biochemistry; 1999 Jun; 38(22):7380-7. PubMed ID: 10353850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploratory studies of ab initio protein structure prediction: multiple copy simulated annealing, AMBER energy functions, and a generalized born/solvent accessibility solvation model.
    Liu Y; Beveridge DL
    Proteins; 2002 Jan; 46(1):128-46. PubMed ID: 11746709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Backbone dynamics of homologous fibronectin type III cell adhesion domains from fibronectin and tenascin.
    Carr PA; Erickson HP; Palmer AG
    Structure; 1997 Jul; 5(7):949-59. PubMed ID: 9261088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo backbone and sequence design of an idealized alpha/beta-barrel protein: evidence of stable tertiary structure.
    Offredi F; Dubail F; Kischel P; Sarinski K; Stern AS; Van de Weerdt C; Hoch JC; Prosperi C; François JM; Mayo SL; Martial JA
    J Mol Biol; 2003 Jan; 325(1):163-74. PubMed ID: 12473459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of boundary selection on the stability and folding of the third fibronectin type III domain from human tenascin.
    Hamill SJ; Meekhof AE; Clarke J
    Biochemistry; 1998 Jun; 37(22):8071-9. PubMed ID: 9609701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis, clustering and prediction of the conformation of short and medium size loops connecting regular secondary structures.
    Rufino SD; Donate LE; Canard L; Blundell TL
    Pac Symp Biocomput; 1996; ():570-89. PubMed ID: 9390259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does conformational free energy distinguish loop conformations in proteins?
    Pellequer JL; Chen SW
    Biophys J; 1997 Nov; 73(5):2359-75. PubMed ID: 9370431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The energy of formation of internal loops in triple-helical collagen polypeptides.
    Paterlini MG; Némethy G; Scheraga HA
    Biopolymers; 1995 Jun; 35(6):607-19. PubMed ID: 7766826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New efficient statistical sequence-dependent structure prediction of short to medium-sized protein loops based on an exhaustive loop classification.
    Wojcik J; Mornon JP; Chomilier J
    J Mol Biol; 1999 Jun; 289(5):1469-90. PubMed ID: 10373380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.