These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 17971808)

  • 1. Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum.
    Shao L; Hu S; Yang Y; Gu Y; Chen J; Yang Y; Jiang W; Yang S
    Cell Res; 2007 Nov; 17(11):963-5. PubMed ID: 17971808
    [No Abstract]   [Full Text] [Related]  

  • 2. Targeted and random bacterial gene disruption using a group II intron (targetron) vector containing a retrotransposition-activated selectable marker.
    Zhong J; Karberg M; Lambowitz AM
    Nucleic Acids Res; 2003 Mar; 31(6):1656-64. PubMed ID: 12626707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of a glucose phosphotransferase system in Clostridium acetobutylicum ATCC 824.
    Tangney M; Mitchell WJ
    Appl Microbiol Biotechnol; 2007 Feb; 74(2):398-405. PubMed ID: 17096120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosomal engineering of Clostridium perfringens using group II introns.
    Gupta P; Chen Y
    Methods Mol Biol; 2008; 435():217-28. PubMed ID: 18370079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Genetic modification systems for Clostridium acetobutylicum].
    Dong H; Zhang Y; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2010 Oct; 26(10):1372-8. PubMed ID: 21218624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli.
    Inui M; Suda M; Kimura S; Yasuda K; Suzuki H; Toda H; Yamamoto S; Okino S; Suzuki N; Yukawa H
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1305-16. PubMed ID: 18060402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete genome sequence of Clostridium acetobutylicum DSM 1731, a solvent-producing strain with multireplicon genome architecture.
    Bao G; Wang R; Zhu Y; Dong H; Mao S; Zhang Y; Chen Z; Li Y; Ma Y
    J Bacteriol; 2011 Sep; 193(18):5007-8. PubMed ID: 21742891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A functional recT gene for recombineering of Clostridium.
    Dong H; Tao W; Gong F; Li Y; Zhang Y
    J Biotechnol; 2014 Mar; 173():65-7. PubMed ID: 24384234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ClosTron-targeted mutagenesis.
    Heap JT; Cartman ST; Kuehne SA; Cooksley C; Minton NP
    Methods Mol Biol; 2010; 646():165-82. PubMed ID: 20597009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network.
    Lee J; Yun H; Feist AM; Palsson BØ; Lee SY
    Appl Microbiol Biotechnol; 2008 Oct; 80(5):849-62. PubMed ID: 18758767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PerR acts as a switch for oxygen tolerance in the strict anaerobe Clostridium acetobutylicum.
    Hillmann F; Fischer RJ; Saint-Prix F; Girbal L; Bahl H
    Mol Microbiol; 2008 May; 68(4):848-60. PubMed ID: 18430081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secretory production of biologically active rat interleukin-2 by Clostridium acetobutylicum DSM792 as a tool for anti-tumor treatment.
    Barbé S; Van Mellaert L; Theys J; Geukens N; Lammertyn E; Lambin P; Anné J
    FEMS Microbiol Lett; 2005 May; 246(1):67-73. PubMed ID: 15869963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of a novel gene involved in autolysis of Clostridium cells.
    Yang L; Bao G; Zhu Y; Dong H; Zhang Y; Li Y
    Protein Cell; 2013 Jun; 4(6):467-74. PubMed ID: 23702687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current progress of targetron technology: development, improvement and application in metabolic engineering.
    Liu YJ; Zhang J; Cui GZ; Cui Q
    Biotechnol J; 2015 Jun; 10(6):855-65. PubMed ID: 25735546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CAC2634-disrupted mutant of Clostridium acetobutylicum can be electrotransformed in air.
    Dong H; Tao W; Zhu L; Zhang Y; Li Y
    Lett Appl Microbiol; 2011 Sep; 53(3):379-82. PubMed ID: 21711370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations.
    Sillers R; Al-Hinai MA; Papoutsakis ET
    Biotechnol Bioeng; 2009 Jan; 102(1):38-49. PubMed ID: 18726959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ClosTron-mediated engineering of Clostridium.
    Kuehne SA; Minton NP
    Bioengineered; 2012; 3(4):247-54. PubMed ID: 22750794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased productivity of Clostridium acetobutylicum fermentation of acetone, butanol, and ethanol by pervaporation through supported ionic liquid membrane.
    Izák P; Schwarz K; Ruth W; Bahl H; Kragl U
    Appl Microbiol Biotechnol; 2008 Mar; 78(4):597-602. PubMed ID: 18231789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial targeted tumour therapy-dawn of a new era.
    Wei MQ; Mengesha A; Good D; Anné J
    Cancer Lett; 2008 Jan; 259(1):16-27. PubMed ID: 18063294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of industrial strains of Aspergillus oryzae lacking ferrichrysin by disruption of the dffA gene.
    Watanabe H; Hatakeyama M; Sakurai H; Uchimiya H; Sato T
    J Biosci Bioeng; 2008 Nov; 106(5):488-92. PubMed ID: 19111645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.