These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 17971991)

  • 1. Optimization of non-natural nucleotides for selective incorporation opposite damaged DNA.
    Vineyard D; Zhang X; Donnelly A; Lee I; Berdis AJ
    Org Biomol Chem; 2007 Nov; 5(22):3623-30. PubMed ID: 17971991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational attempts to optimize non-natural nucleotides for selective incorporation opposite an abasic site.
    Zhang X; Donnelly A; Lee I; Berdis AJ
    Biochemistry; 2006 Nov; 45(44):13293-303. PubMed ID: 17073450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is a thymine dimer replicated via a transient abasic site intermediate? A comparative study using non-natural nucleotides.
    Devadoss B; Lee I; Berdis AJ
    Biochemistry; 2007 Apr; 46(15):4486-98. PubMed ID: 17378586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophobicity, shape, and pi-electron contributions during translesion DNA synthesis.
    Zhang X; Lee I; Zhou X; Berdis AJ
    J Am Chem Soc; 2006 Jan; 128(1):143-9. PubMed ID: 16390141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the contributions of desolvation and base-stacking during translesion DNA synthesis.
    Zhang X; Lee I; Berdis AJ
    Org Biomol Chem; 2004 Jun; 2(12):1703-11. PubMed ID: 15188037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent analysis of translesion DNA synthesis by using a novel, non-natural nucleotide analogue.
    Lee I; Berdis A
    Chembiochem; 2006 Dec; 7(12):1990-7. PubMed ID: 17091513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of nonnatural nucleotides to probe the contributions of shape complementarity and pi-electron surface area during DNA polymerization.
    Zhang X; Lee I; Berdis AJ
    Biochemistry; 2005 Oct; 44(39):13101-10. PubMed ID: 16185078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A potential chemotherapeutic strategy for the selective inhibition of promutagenic DNA synthesis by nonnatural nucleotides.
    Zhang X; Lee I; Berdis AJ
    Biochemistry; 2005 Oct; 44(39):13111-21. PubMed ID: 16185079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the contribution of base stacking during translesion DNA replication.
    Reineks EZ; Berdis AJ
    Biochemistry; 2004 Jan; 43(2):393-404. PubMed ID: 14717593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accessory proteins assist exonuclease-deficient bacteriophage T4 DNA polymerase in replicating past an abasic site.
    Blanca G; Delagoutte E; Tanguy le Gac N; Johnson NP; Baldacci G; Villani G
    Biochem J; 2007 Mar; 402(2):321-9. PubMed ID: 17064253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the "A-rule" of translesion DNA synthesis: promutagenic DNA synthesis using modified nucleoside triphosphates.
    Devadoss B; Lee I; Berdis AJ
    Biochemistry; 2007 Dec; 46(48):13752-61. PubMed ID: 17983244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro selection of sequence contexts which enhance bypass of abasic sites and tetrahydrofuran by T4 DNA polymerase holoenzyme.
    Hatahet Z; Zhou M; Reha-Krantz LJ; Ide H; Morrical SW; Wallace SS
    J Mol Biol; 1999 Mar; 286(4):1045-57. PubMed ID: 10047481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for Watson-Crick and not Hoogsteen or wobble base pairing in the selection of nucleotides for insertion opposite pyrimidines and a thymine dimer by yeast DNA pol eta.
    Hwang H; Taylor JS
    Biochemistry; 2005 Mar; 44(12):4850-60. PubMed ID: 15779911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translesion DNA synthesis: polymerase response to altered nucleotides.
    Strauss BS
    Cancer Surv; 1985; 4(3):493-516. PubMed ID: 2825983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A specific partner for abasic damage in DNA.
    Matray TJ; Kool ET
    Nature; 1999 Jun; 399(6737):704-8. PubMed ID: 10385125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of non-natural nucleotides to probe template-independent DNA synthesis.
    Berdis AJ; McCutcheon D
    Chembiochem; 2007 Aug; 8(12):1399-408. PubMed ID: 17607682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of base damages on DNA replication--mechanism of preferential purine nucleotide insertion opposite abasic site in template DNA.
    Ide H; Murayama H; Murakami A; Morii T; Makino K
    Nucleic Acids Symp Ser; 1992; (27):167-8. PubMed ID: 1289805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of the 3'-5' exonuclease of the replicative T4 DNA polymerase allows translesion DNA synthesis at an abasic site.
    Tanguy Le Gac N; Delagoutte E; Germain M; Villani G
    J Mol Biol; 2004 Mar; 336(5):1023-34. PubMed ID: 15037066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymerase-catalysed incorporation of glucose nucleotides into a DNA duplex.
    Renders M; Abramov M; Froeyen M; Herdewijn P
    Chemistry; 2009; 15(22):5463-70. PubMed ID: 19308979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of efficient and accurate nucleotide incorporation opposite 7,8-dihydro-8-oxoguanine by Saccharomyces cerevisiae DNA polymerase eta.
    Carlson KD; Washington MT
    Mol Cell Biol; 2005 Mar; 25(6):2169-76. PubMed ID: 15743815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.