BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 17972286)

  • 1. Modeling the accessible conformations of the intrinsically unstructured transactivation domain of p53.
    Lowry DF; Stancik A; Shrestha RM; Daughdrill GW
    Proteins; 2008 May; 71(2):587-98. PubMed ID: 17972286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying long-range structure in the intrinsically unstructured transactivation domain of p53.
    Vise P; Baral B; Stancik A; Lowry DF; Daughdrill GW
    Proteins; 2007 May; 67(3):526-30. PubMed ID: 17335006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leucine-rich hydrophobic clusters promote folding of the N-terminus of the intrinsically disordered transactivation domain of p53.
    Espinoza-Fonseca LM
    FEBS Lett; 2009 Feb; 583(3):556-60. PubMed ID: 19162020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
    Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z
    J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural divergence is more extensive than sequence divergence for a family of intrinsically disordered proteins.
    Borcherds W; Kashtanov S; Wu H; Daughdrill GW
    Proteins; 2013 Oct; 81(10):1686-98. PubMed ID: 23606624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural interpretation of paramagnetic relaxation enhancement-derived distances for disordered protein states.
    Ganguly D; Chen J
    J Mol Biol; 2009 Jul; 390(3):467-77. PubMed ID: 19447112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the interaction between the N-terminal domain of the tumor suppressor p53 and azurin.
    Taranta M; Bizzarri AR; Cannistraro S
    J Mol Recognit; 2009; 22(3):215-22. PubMed ID: 19140135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the relationship between the p53 C-terminal domain and its binding partners using molecular dynamics.
    Allen WJ; Capelluto DG; Finkielstein CV; Bevan DR
    J Phys Chem B; 2010 Oct; 114(41):13201-13. PubMed ID: 20873738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition of the disordered p53 transactivation domain by the transcriptional adapter zinc finger domains of CREB-binding protein.
    Krois AS; Ferreon JC; Martinez-Yamout MA; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):E1853-62. PubMed ID: 26976603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water-mediated interactions between DNA and PhoB DNA-binding/transactivation domain: NMR-restrained molecular dynamics in explicit water environment.
    Yamane T; Okamura H; Ikeguchi M; Nishimura Y; Kidera A
    Proteins; 2008 Jun; 71(4):1970-83. PubMed ID: 18186481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of transactivation capability and conformation of p53 temperature-dependent mutants and their reactivation by amifostine in yeast.
    Grochova D; Vankova J; Damborsky J; Ravcukova B; Smarda J; Vojtesek B; Smardova J
    Oncogene; 2008 Feb; 27(9):1243-52. PubMed ID: 17724467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of the K24N mutation on the transactivation domain of p53 and its binding to murine double-minute clone 2.
    Zhan YA; Wu H; Powell AT; Daughdrill GW; Ytreberg FM
    Proteins; 2013 Oct; 81(10):1738-47. PubMed ID: 23609977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR chemical shift and relaxation measurements provide evidence for the coupled folding and binding of the p53 transactivation domain.
    Vise PD; Baral B; Latos AJ; Daughdrill GW
    Nucleic Acids Res; 2005; 33(7):2061-77. PubMed ID: 15824059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR structure of the complex between the Tfb1 subunit of TFIIH and the activation domain of VP16: structural similarities between VP16 and p53.
    Langlois C; Mas C; Di Lello P; Jenkins LM; Legault P; Omichinski JG
    J Am Chem Soc; 2008 Aug; 130(32):10596-604. PubMed ID: 18630911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of affinity between p53 transactivation domain and MDM2 across the animal kingdom demonstrates high plasticity of motif-mediated interactions.
    Mihalič F; Åberg E; Farkhondehkish P; Theys N; Andersson E; Jemth P
    Protein Sci; 2023 Jul; 32(7):e4684. PubMed ID: 37211711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR.
    Tang C; Schwieters CD; Clore GM
    Nature; 2007 Oct; 449(7165):1078-82. PubMed ID: 17960247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvent-exposed residues located in the beta-sheet modulate the stability of the tetramerization domain of p53--a structural and combinatorial approach.
    Mora P; Carbajo RJ; Pineda-Lucena A; Sánchez del Pino MM; Pérez-Payá E
    Proteins; 2008 Jun; 71(4):1670-85. PubMed ID: 18076077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using peptides to study the interaction between the p53 tetramerization domain and HIV-1 Tat.
    Gabizon R; Mor M; Rosenberg MM; Britan L; Hayouka Z; Kotler M; Shalev DE; Friedler A
    Biopolymers; 2008; 90(2):105-16. PubMed ID: 18189286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational and dynamics changes induced by bile acids binding to chicken liver bile acid binding protein.
    Eberini I; Guerini Rocco A; Ientile AR; Baptista AM; Gianazza E; Tomaselli S; Molinari H; Ragona L
    Proteins; 2008 Jun; 71(4):1889-98. PubMed ID: 18175325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the BH3 domains from the p53-inducible BH3-only proteins Noxa and Puma in complex with Mcl-1.
    Day CL; Smits C; Fan FC; Lee EF; Fairlie WD; Hinds MG
    J Mol Biol; 2008 Jul; 380(5):958-71. PubMed ID: 18589438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.