BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 17972328)

  • 1. Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater.
    Kim JR; Zuo Y; Regan JM; Logan BE
    Biotechnol Bioeng; 2008 Apr; 99(5):1120-7. PubMed ID: 17972328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electricity generation from swine wastewater using microbial fuel cells.
    Min B; Kim J; Oh S; Regan JM; Logan BE
    Water Res; 2005 Dec; 39(20):4961-8. PubMed ID: 16293279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell.
    Sun J; Hu YY; Bi Z; Cao YQ
    Bioresour Technol; 2009 Jul; 100(13):3185-92. PubMed ID: 19269168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electricity generation from cysteine in a microbial fuel cell.
    Logan BE; Murano C; Scott K; Gray ND; Head IM
    Water Res; 2005 Mar; 39(5):942-52. PubMed ID: 15743641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microbial fuel cell equipped with a biocathode for organic removal and denitrification.
    Lefebvre O; Al-Mamun A; Ng HY
    Water Sci Technol; 2008; 58(4):881-5. PubMed ID: 18776625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen removal from wastewater using membrane aerated microbial fuel cell techniques.
    Yu CP; Liang Z; Das A; Hu Z
    Water Res; 2011 Jan; 45(3):1157-64. PubMed ID: 21131019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load.
    Mohan SV; Raghavulu SV; Peri D; Sarma PN
    Biosens Bioelectron; 2009 Mar; 24(7):2021-7. PubMed ID: 19058958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber.
    Patil SA; Surakasi VP; Koul S; Ijmulwar S; Vivek A; Shouche YS; Kapadnis BP
    Bioresour Technol; 2009 Nov; 100(21):5132-9. PubMed ID: 19539465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system.
    Chung K; Okabe S
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):965-77. PubMed ID: 19404637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of the exoelectrogenic denitrifying bacterium Comamonas denitrificans based on dilution to extinction.
    Xing D; Cheng S; Logan BE; Regan JM
    Appl Microbiol Biotechnol; 2010 Feb; 85(5):1575-87. PubMed ID: 19779712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of formation of biofilms and chemical scale on the cathode electrode on the performance of a continuous two-chamber microbial fuel cell.
    Chung K; Fujiki I; Okabe S
    Bioresour Technol; 2011 Jan; 102(1):355-60. PubMed ID: 20923722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater.
    Wen Q; Wu Y; Cao D; Zhao L; Sun Q
    Bioresour Technol; 2009 Sep; 100(18):4171-5. PubMed ID: 19406635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redistribution of wastewater alkalinity with a microbial fuel cell to support nitrification of reject water.
    Modin O; Fukushi K; Rabaey K; Rozendal RA; Yamamoto K
    Water Res; 2011 Apr; 45(8):2691-9. PubMed ID: 21421249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells.
    Kim JR; Jung SH; Regan JM; Logan BE
    Bioresour Technol; 2007 Sep; 98(13):2568-77. PubMed ID: 17097875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of ammonium concentration and charge exchange on ammonium recovery from high strength wastewater using a microbial fuel cell.
    Kuntke P; Geleji M; Bruning H; Zeeman G; Hamelers HV; Buisman CJ
    Bioresour Technol; 2011 Mar; 102(6):4376-82. PubMed ID: 21277769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electricity generation using membrane and salt bridge microbial fuel cells.
    Min B; Cheng S; Logan BE
    Water Res; 2005 May; 39(9):1675-86. PubMed ID: 15899266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells.
    Virdis B; Rabaey K; Rozendal RA; Yuan Z; Keller J
    Water Res; 2010 May; 44(9):2970-80. PubMed ID: 20303136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells.
    Oh SE; Logan BE
    Appl Microbiol Biotechnol; 2006 Mar; 70(2):162-9. PubMed ID: 16167143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electricity generation from bio-treatment of sewage sludge with microbial fuel cell.
    Jiang J; Zhao Q; Zhang J; Zhang G; Lee DJ
    Bioresour Technol; 2009 Dec; 100(23):5808-12. PubMed ID: 19615894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electricity production from beer brewery wastewater using single chamber microbial fuel cell.
    Wang X; Feng YJ; Lee H
    Water Sci Technol; 2008; 57(7):1117-21. PubMed ID: 18441441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.