BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 17972875)

  • 21. Spontaneous activity in the developing auditory system.
    Wang HC; Bergles DE
    Cell Tissue Res; 2015 Jul; 361(1):65-75. PubMed ID: 25296716
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Type II cadherins guide assembly of a direction-selective retinal circuit.
    Duan X; Krishnaswamy A; De la Huerta I; Sanes JR
    Cell; 2014 Aug; 158(4):793-807. PubMed ID: 25126785
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Damage-induced cell-cell communication in different cochlear cell types via two distinct ATP-dependent Ca waves.
    Lahne M; Gale JE
    Purinergic Signal; 2010 Jun; 6(2):189-200. PubMed ID: 20806011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Purinergic signaling in cochlear supporting cells reduces hair cell excitability by increasing the extracellular space.
    Babola TA; Kersbergen CJ; Wang HC; Bergles DE
    Elife; 2020 Jan; 9():. PubMed ID: 31913121
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NMDA Receptors Enhance Spontaneous Activity and Promote Neuronal Survival in the Developing Cochlea.
    Zhang-Hooks Y; Agarwal A; Mishina M; Bergles DE
    Neuron; 2016 Jan; 89(2):337-50. PubMed ID: 26774161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina.
    Meister M; Wong RO; Baylor DA; Shatz CJ
    Science; 1991 May; 252(5008):939-43. PubMed ID: 2035024
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Purinergic Signaling Controls Spontaneous Activity in the Auditory System throughout Early Development.
    Babola TA; Li S; Wang Z; Kersbergen CJ; Elgoyhen AB; Coate TM; Bergles DE
    J Neurosci; 2021 Jan; 41(4):594-612. PubMed ID: 33303678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Homeostatic Control of Spontaneous Activity in the Developing Auditory System.
    Babola TA; Li S; Gribizis A; Lee BJ; Issa JB; Wang HC; Crair MC; Bergles DE
    Neuron; 2018 Aug; 99(3):511-524.e5. PubMed ID: 30077356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NKCC1 in Neonatal Cochlear Support Cells Reloads Ions Necessary for Cochlear Spontaneous Activity.
    Kang KW; Sharma K; Park SH; Lee JK; Lee JC; Yi E
    Exp Neurobiol; 2024 Apr; 33(2):68-76. PubMed ID: 38724477
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Damage-evoked signals in cochlear neurons and supporting cells.
    Wood MB; Nowak N; Fuchs PA
    Front Neurol; 2024; 15():1361747. PubMed ID: 38419694
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Auditory Hair Cells and Spiral Ganglion Neurons Regenerate Synapses with Refined Release Properties In Vitro.
    Vincent PFY; Young ED; Edge ASB; Glowatzki E
    bioRxiv; 2023 Dec; ():. PubMed ID: 38076928
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural and Functional Development of Inhibitory Connections from the Medial Nucleus of the Trapezoid Body to the Superior Paraolivary Nucleus.
    Lee J; Clause A; Kandler K
    J Neurosci; 2023 Nov; 43(46):7766-7779. PubMed ID: 37734946
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Age-related changes in P2Y receptor signalling in mouse cochlear supporting cells.
    Hool SA; Jeng JY; Jagger DJ; Marcotti W; Ceriani F
    J Physiol; 2023 Oct; 601(19):4375-4395. PubMed ID: 37715703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oncomodulin regulates spontaneous calcium signalling and maturation of afferent innervation in cochlear outer hair cells.
    Yang Y; Murtha K; Climer LK; Ceriani F; Thompson P; Hornak AJ; Marcotti W; Simmons DD
    J Physiol; 2023 Oct; 601(19):4291-4308. PubMed ID: 37642186
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Early development of olfactory circuit function.
    Maier JX; Zhang Z
    Front Cell Neurosci; 2023; 17():1225186. PubMed ID: 37565031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bilateral widefield calcium imaging reveals circuit asymmetries and lateralized functional activation of the mouse auditory cortex.
    Calhoun G; Chen CT; Kanold PO
    Proc Natl Acad Sci U S A; 2023 Jul; 120(30):e2219340120. PubMed ID: 37459544
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TRPA1 activation in non-sensory supporting cells contributes to regulation of cochlear sensitivity after acoustic trauma.
    VĂ©lez-Ortega AC; Stepanyan R; Edelmann SE; Torres-Gallego S; Park C; Marinkova DA; Nowacki JS; Sinha GP; Frolenkov GI
    Nat Commun; 2023 Jun; 14(1):3871. PubMed ID: 37391431
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preservation of developmental spontaneous activity enables early auditory system maturation in deaf mice.
    Kersbergen CJ; Babola TA; Kanold PO; Bergles DE
    PLoS Biol; 2023 Jun; 21(6):e3002160. PubMed ID: 37368868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Research progress in delineating the pathological mechanisms of
    Wang Y; Jin Y; Zhang Q; Xiong Y; Gu X; Zeng S; Chen W
    Front Cell Neurosci; 2023; 17():1208406. PubMed ID: 37333892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The neuroscience of cancer.
    Mancusi R; Monje M
    Nature; 2023 Jun; 618(7965):467-479. PubMed ID: 37316719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.