BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 17972875)

  • 41. Spontaneous regeneration and recovery of hearing function of the central auditory pathway in young rats.
    Ito J; Murata M; Kawaguchi S
    Neurosci Lett; 1998 Oct; 254(3):173-6. PubMed ID: 10214985
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biology and music. Music of the hemispheres.
    Tramo MJ
    Science; 2001 Jan; 291(5501):54-6. PubMed ID: 11192009
    [No Abstract]   [Full Text] [Related]  

  • 43. Pannexin1 channels dominate ATP release in the cochlea ensuring endocochlear potential and auditory receptor potential generation and hearing.
    Chen J; Zhu Y; Liang C; Chen J; Zhao HB
    Sci Rep; 2015 Jun; 5():10762. PubMed ID: 26035172
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of long-term non-traumatic noise exposure on the adult central auditory system. Hearing problems without hearing loss.
    Eggermont JJ
    Hear Res; 2017 Sep; 352():12-22. PubMed ID: 27793584
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synaptic encoding and processing of auditory information in physiology and disease.
    Moser T; Strenzke N
    Hear Res; 2015 Dec; 330(Pt B):155-6. PubMed ID: 26119179
    [No Abstract]   [Full Text] [Related]  

  • 46. Compartmentalization of antagonistic Ca
    Moglie MJ; Fuchs PA; Elgoyhen AB; Goutman JD
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):E2095-E2104. PubMed ID: 29439202
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of adenosine 5'-triphosphate and related agonists on cochlear function.
    Kujawa SG; Erostegui C; Fallon M; Crist J; Bobbin RP
    Hear Res; 1994 Jun; 76(1-2):87-100. PubMed ID: 7928720
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Single unit recordings in the auditory nerve of congenitally deaf white cats: morphological correlates in the cochlea and cochlear nucleus.
    Ryugo DK; Rosenbaum BT; Kim PJ; Niparko JK; Saada AA
    J Comp Neurol; 1998 Aug; 397(4):532-48. PubMed ID: 9699914
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tuning properties of cochlear hair cells.
    Russell IJ; Sellick PM
    Nature; 1977 Jun; 267(5614):858-60. PubMed ID: 895845
    [No Abstract]   [Full Text] [Related]  

  • 50. Strengthening of the Efferent Olivocochlear System Leads to Synaptic Dysfunction and Tonotopy Disruption of a Central Auditory Nucleus.
    Di Guilmi MN; Boero LE; Castagna VC; Rodríguez-Contreras A; Wedemeyer C; Gómez-Casati ME; Elgoyhen AB
    J Neurosci; 2019 Sep; 39(36):7037-7048. PubMed ID: 31217330
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Calpain inhibitors protect auditory sensory cells from hypoxia and neurotrophin-withdrawal induced apoptosis.
    Cheng AG; Huang T; Stracher A; Kim A; Liu W; Malgrange B; Lefebvre PP; Schulman A; Van de Water TR
    Brain Res; 1999 Dec; 850(1-2):234-43. PubMed ID: 10629769
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Prolonged low-level noise-induced plasticity in the peripheral and central auditory system of rats.
    Sheppard AM; Chen GD; Manohar S; Ding D; Hu BH; Sun W; Zhao J; Salvi R
    Neuroscience; 2017 Sep; 359():159-171. PubMed ID: 28711622
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tuning in the bullfrog ear.
    Lewis ER
    Biophys J; 1988 Mar; 53(3):441-7. PubMed ID: 3258166
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expression of a potassium current in inner hair cells during development of hearing in mice.
    Kros CJ; Ruppersberg JP; Rüsch A
    Nature; 1998 Jul; 394(6690):281-4. PubMed ID: 9685158
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differential damage to auditory neurons and hair cells by ototoxins and neuroprotection by specific neurotrophins in rat cochlear organotypic cultures.
    Zheng JL; Gao WQ
    Eur J Neurosci; 1996 Sep; 8(9):1897-905. PubMed ID: 8921280
    [TBL] [Abstract][Full Text] [Related]  

  • 56. ATP-induced morphological changes in supporting cells of the developing cochlea.
    Tritsch NX; Zhang YX; Ellis-Davies G; Bergles DE
    Purinergic Signal; 2010 Jun; 6(2):155-66. PubMed ID: 20806009
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neuronal encoding of sound direction in the auditory midbrain of the rainbow trout.
    Wubbels RJ; Schellart NA
    J Neurophysiol; 1997 Jun; 77(6):3060-74. PubMed ID: 9212257
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Frequency tuning in a frog vestibular organ.
    Ashmore JF
    Nature; 1983 Aug 11-17; 304(5926):536-8. PubMed ID: 6603578
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Age-related changes in auditory nerve-inner hair cell connections, hair cell numbers, auditory brain stem response and gap detection in UM-HET4 mice.
    Altschuler RA; Dolan DF; Halsey K; Kanicki A; Deng N; Martin C; Eberle J; Kohrman DC; Miller RA; Schacht J
    Neuroscience; 2015 Apr; 292():22-33. PubMed ID: 25665752
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The electrical properties of auditory hair cells in the frog amphibian papilla.
    Smotherman MS; Narins PM
    J Neurosci; 1999 Jul; 19(13):5275-92. PubMed ID: 10377339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.