These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 17973155)
1. The ecology of Bacillus thuringiensis on the Phylloplane: colonization from soil, plasmid transfer, and interaction with larvae of Pieris brassicae. Bizzarri MF; Bishop AH Microb Ecol; 2008 Jul; 56(1):133-9. PubMed ID: 17973155 [TBL] [Abstract][Full Text] [Related]
2. Effect of Bacillus thuringiensis naturally colonising Brassica campestris var. chinensis leaves on neonate larvae of Pieris brassicae. Prabhakar A; Bishop AH J Invertebr Pathol; 2009 Mar; 100(3):193-4. PubMed ID: 19232351 [TBL] [Abstract][Full Text] [Related]
3. Plasmid transfer between the Bacillus thuringiensis subspecies kurstaki and tenebrionis in laboratory culture and soil and in lepidopteran and coleopteran larvae. Thomas DJ; Morgan JA; Whipps JM; Saunders JR Appl Environ Microbiol; 2000 Jan; 66(1):118-24. PubMed ID: 10618212 [TBL] [Abstract][Full Text] [Related]
4. Multiple-locus sequence typing analysis of Bacillus thuringiensis recovered from the phylloplane of clover (Trifolium hybridum) in vegetative form. Bizzarri MF; Prabhakar A; Bishop AH Microb Ecol; 2008 May; 55(4):619-25. PubMed ID: 17682816 [TBL] [Abstract][Full Text] [Related]
5. Recovery of Bacillus thuringiensis in vegetative form from the phylloplane of clover (Trifolium hybridum) during a growing season. Bizzarri MF; Bishop AH J Invertebr Pathol; 2007 Jan; 94(1):38-47. PubMed ID: 17005192 [TBL] [Abstract][Full Text] [Related]
6. Plasmid transfer between strains of Bacillus thuringiensis infecting Galleria mellonella and Spodoptera littoralis. Jarrett P; Stephenson M Appl Environ Microbiol; 1990 Jun; 56(6):1608-14. PubMed ID: 2383006 [TBL] [Abstract][Full Text] [Related]
7. Fate of Bacillus thuringiensis strains in different insect larvae. Suzuki MT; Lereclus D; Arantes OM Can J Microbiol; 2004 Nov; 50(11):973-5. PubMed ID: 15644915 [TBL] [Abstract][Full Text] [Related]
8. Plasmid transfer between Bacillus thuringiensis subsp. israelensis strains in laboratory culture, river water, and dipteran larvae. Thomas DJ; Morgan JA; Whipps JM; Saunders JR Appl Environ Microbiol; 2001 Jan; 67(1):330-8. PubMed ID: 11133463 [TBL] [Abstract][Full Text] [Related]
9. Conjugal transfer between Bacillus thuringiensis and Bacillus cereus strains is not directly correlated with growth of recipient strains. Santos CA; Vilas-Bôas GT; Lereclus D; Suzuki MT; Angelo EA; Arantes OM J Invertebr Pathol; 2010 Oct; 105(2):171-5. PubMed ID: 20600090 [TBL] [Abstract][Full Text] [Related]
10. Kinetics of plasmid transfer among Bacillus cereus group strains within lepidopteran larvae. Yuan YM; Hu XM; Liu HZ; Hansen BM; Yan JP; Yuan ZM Arch Microbiol; 2007 Jun; 187(6):425-31. PubMed ID: 17216168 [TBL] [Abstract][Full Text] [Related]
11. Translocation and insecticidal activity of Bacillus thuringiensis living inside of plants. Monnerat RG; Soares CM; Capdeville G; Jones G; Martins ES; Praça L; Cordeiro BA; Braz SV; dos Santos RC; Berry C Microb Biotechnol; 2009 Jul; 2(4):512-20. PubMed ID: 21255282 [TBL] [Abstract][Full Text] [Related]
12. Natural occurrence of Bacillus thuringiensis on cabbage foliage and in insects associated with cabbage crops. Damgaard PH; Hansen BM; Pedersen JC; Eilenberg J J Appl Microbiol; 1997 Feb; 82(2):253-8. PubMed ID: 12452602 [TBL] [Abstract][Full Text] [Related]
13. Environmental factors determining the epidemiology and population genetic structure of the Bacillus cereus group in the field. Raymond B; Wyres KL; Sheppard SK; Ellis RJ; Bonsall MB PLoS Pathog; 2010 May; 6(5):e1000905. PubMed ID: 20502683 [TBL] [Abstract][Full Text] [Related]
14. Immigration of Bacillus thuringiensis to bean leaves from soil inoculum or distal plant parts. Maduell P; Armengol G; Llagostera M; Lindow S; Orduz S J Appl Microbiol; 2007 Dec; 103(6):2593-600. PubMed ID: 18045443 [TBL] [Abstract][Full Text] [Related]
15. Invertebrate pathogenicity and toxin-producing potential of strains of Bacillus thuringiensis endemic to Antarctica. Prabhakar A; Bishop AH J Invertebr Pathol; 2011 Jun; 107(2):132-8. PubMed ID: 21457716 [TBL] [Abstract][Full Text] [Related]
16. Diversity of Bacillus thuringiensis strains in the maize and bean phylloplane and their respective soils in Colombia. Jara S; Maduell P; Orduz S J Appl Microbiol; 2006 Jul; 101(1):117-24. PubMed ID: 16834598 [TBL] [Abstract][Full Text] [Related]
17. A plasmid-borne Rap-Phr system regulates sporulation of Bacillus thuringiensis in insect larvae. Fazion F; Perchat S; Buisson C; Vilas-Bôas G; Lereclus D Environ Microbiol; 2018 Jan; 20(1):145-155. PubMed ID: 28967209 [TBL] [Abstract][Full Text] [Related]
18. Bacillus thuringiensis HD-1 Cry- : development of a safe, non-insecticidal simulant for Bacillus anthracis. Bishop AH; Robinson CV J Appl Microbiol; 2014 Sep; 117(3):654-62. PubMed ID: 24903218 [TBL] [Abstract][Full Text] [Related]
19. The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Salamitou S; Ramisse F; Brehélin M; Bourguet D; Gilois N; Gominet M; Hernandez E; Lereclus D Microbiology (Reading); 2000 Nov; 146 ( Pt 11)():2825-2832. PubMed ID: 11065361 [TBL] [Abstract][Full Text] [Related]
20. Application of Bacillus thuringiensis strains with conjugal and mobilizing capability drives gene transmissibility within Bacillus cereus group populations in confined habitats. Hu X; Huang D; Ogalo J; Geng P; Yuan Z; Xiong H; Wan X; Sun J BMC Microbiol; 2020 Nov; 20(1):363. PubMed ID: 33243143 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]