These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 17973193)

  • 21. Reactions of blue and yellow fungal laccases with lignin model compounds.
    Leontievsky AA; Myasoedova NM; Baskunov BP; Pozdnyakova NN; Vares T; Kalkkinen N; Hatakka AI; Golovleva LA
    Biochemistry (Mosc); 1999 Oct; 64(10):1150-6. PubMed ID: 10561562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differences in crystalline cellulose modification due to degradation by brown and white rot fungi.
    Hastrup AC; Howell C; Larsen FH; Sathitsuksanoh N; Goodell B; Jellison J
    Fungal Biol; 2012 Oct; 116(10):1052-63. PubMed ID: 23063184
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fungicidal values of bio-oils and their lignin-rich fractions obtained from wood/bark fast pyrolysis.
    Mohan D; Shi J; Nicholas DD; Pittman CU; Steele PH; Cooper JE
    Chemosphere; 2008 Mar; 71(3):456-65. PubMed ID: 18093634
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequential white-rot and brown-rot fungal pretreatment of wheat straw as a promising alternative for complementary mild treatments.
    Hermosilla E; Rubilar O; Schalchli H; da Silva AS; Ferreira-Leitao V; Diez MC
    Waste Manag; 2018 Sep; 79():240-250. PubMed ID: 30343752
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multidimensional NMR analysis reveals truncated lignin structures in wood decayed by the brown rot basidiomycete Postia placenta.
    Yelle DJ; Wei D; Ralph J; Hammel KE
    Environ Microbiol; 2011 Apr; 13(4):1091-100. PubMed ID: 21261800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Significant levels of extracellular reactive oxygen species produced by brown rot basidiomycetes on cellulose.
    Cohen R; Jensen KA; Houtman CJ; Hammel KE
    FEBS Lett; 2002 Nov; 531(3):483-8. PubMed ID: 12435597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparing lignocellulose physiochemistry after decomposition by brown rot fungi with distinct evolutionary origins.
    Kaffenberger JT; Schilling JS
    Environ Microbiol; 2015 Dec; 17(12):4885-97. PubMed ID: 25181619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential of Wood-Rotting Fungi to Attack Polystyrene Sulfonate and Its Depolymerisation by Gloeophyllum trabeum via Hydroquinone-Driven Fenton Chemistry.
    Krueger MC; Hofmann U; Moeder M; Schlosser D
    PLoS One; 2015; 10(7):e0131773. PubMed ID: 26147966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A genomics-informed study of oxalate and cellulase regulation by brown rot wood-degrading fungi.
    Presley GN; Zhang J; Schilling JS
    Fungal Genet Biol; 2018 Mar; 112():64-70. PubMed ID: 27543342
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Culture conditions affecting biodegradation components of the brown-rot fungus Gloeophyllum trabeum.
    Varela E; Mester T; Tien M
    Arch Microbiol; 2003 Oct; 180(4):251-6. PubMed ID: 12920506
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodegradation of lignin by white rot fungi.
    Leonowicz A; Matuszewska A; Luterek J; Ziegenhagen D; Wojtaś-Wasilewska M; Cho NS; Hofrichter M; Rogalski J
    Fungal Genet Biol; 1999; 27(2-3):175-85. PubMed ID: 10441443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Fungal decomposition of oat straw during liquid and solid state fermentation].
    Stepanova EV; Koroleva OV; Vasil'chenko LG; Karapetian KN; Landesman EO; Iavmetdinov IS; Kozlov IuP; Rabinovich ML
    Prikl Biokhim Mikrobiol; 2003; 39(1):74-84. PubMed ID: 12625046
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Methane fermentation of Japanese cedar wood pretreated with a white rot fungus, Ceriporiopsis subvermispora.
    Amirta R; Tanabe T; Watanabe T; Honda Y; Kuwahara M; Watanabe T
    J Biotechnol; 2006 May; 123(1):71-7. PubMed ID: 16290242
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A potential mechanism for degradation of 4,5-dichloro-2-(n-octyl)-3[2H]-isothiazolone (DCOIT) by brown-rot fungus Gloeophyllum trabeum.
    Zhu Y; Xue J; Cao J; Xiao H
    J Hazard Mater; 2017 Sep; 337():72-79. PubMed ID: 28505510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of brown-rot basidiomycete Fomitopsis sp. IMER2 for biological treatment of black liquor.
    Xiong Z; Zhang X; Wang H; Ma F; Li L; Li W
    J Biosci Bioeng; 2007 Dec; 104(6):446-50. PubMed ID: 18215629
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Degradation of 2,4-dichlorophenol and pentachlorophenol by two brown rot fungi.
    Fahr K; Wetzstein HG; Grey R; Schlosser D
    FEMS Microbiol Lett; 1999 Jun; 175(1):127-32. PubMed ID: 10361717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alkoxyl- and carbon-centered radicals as primary agents for degrading non-phenolic lignin-substructure model compounds.
    Ohashi Y; Uno Y; Amirta R; Watanabe T; Honda Y; Watanabe T
    Org Biomol Chem; 2011 Apr; 9(7):2481-91. PubMed ID: 21327224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biological pretreatment of softwood Pinus densiflora by three white rot fungi.
    Lee JW; Gwak KS; Park JY; Park MJ; Choi DH; Kwon M; Choi IG
    J Microbiol; 2007 Dec; 45(6):485-91. PubMed ID: 18176529
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exoenzymes in fungi degrading lignin. II. Demethoxylation of lignin and vanillic acid.
    Trojanowski J; Leonowicz A; Hampel B
    Acta Microbiol Pol; 1966; 15(1):17-22. PubMed ID: 4160449
    [No Abstract]   [Full Text] [Related]  

  • 40. Brown Rot-Type Fungal Decomposition of Sorghum Bagasse: Variable Success and Mechanistic Implications.
    Presley GN; Ndimba BK; Schilling JS
    Int J Microbiol; 2018; 2018():4961726. PubMed ID: 29849648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.