BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 17973277)

  • 1. Online preconcentration using monoliths in electrochromatography capillary format and microchips.
    Augustin V; Proczek G; Dugay J; Descroix S; Hennion MC
    J Sep Sci; 2007 Nov; 30(17):2858-65. PubMed ID: 17973277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an acrylate monolith in a cyclo-olefin copolymer microfluidic device for chip electrochromatography separation.
    Faure K; Albert M; Dugas V; Crétier G; Ferrigno R; Morin P; Rocca JL
    Electrophoresis; 2008 Dec; 29(24):4948-55. PubMed ID: 19130574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochromatography on acrylate-based monolith in cyclic olefin copolymer microchip: a cost-effective and easy-to-use technology.
    Ladner Y; Crétier G; Faure K
    Electrophoresis; 2012 Oct; 33(19-20):3087-94. PubMed ID: 23001514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neutral, charged and stratified polar monoliths for hydrophilic interaction capillary electrochromatography.
    Gunasena DN; El Rassi Z
    J Chromatogr A; 2013 Nov; 1317():77-84. PubMed ID: 23972465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neutral octadecyl monolith for reversed phase capillary electrochromatography of a wide range of solutes.
    Karenga S; El Rassi Z
    J Sep Sci; 2008 Aug; 31(14):2677-85. PubMed ID: 18693309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochromatography on acrylate-based monolith in cyclic olefin copolymer microchip: an attractive technology.
    Ladner Y; Cretier G; Faure K
    Methods Mol Biol; 2015; 1274():161-7. PubMed ID: 25673491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyses of polycyclic aromatic hydrocarbons in seafood by capillary electrochromatography-atmospheric pressure chemical ionization/mass spectrometry.
    Cheng YJ; Huang SH; Chiu JY; Liu WL; Huang HY
    J Chromatogr A; 2013 Oct; 1313():132-8. PubMed ID: 23992841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochromatographic separation on a poly(dimethylsiloxane)/glass chip by integration of a capillary containing an acrylate monolithic stationary phase.
    Blas M; Delaunay N; Rocca JL
    J Sep Sci; 2007 Nov; 30(17):3043-9. PubMed ID: 17924367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and evaluation of polymeric continuous bed (monolithic) reversed-phase gradient stationary phases for capillary liquid chromatography and capillary electrochromatography.
    Maruska A; Rocco A; Kornysova O; Fanali S
    J Biochem Biophys Methods; 2007 Feb; 70(1):47-55. PubMed ID: 17197032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of peak shape and efficiency in butyl acrylate-based monolithic columns for capillary electrochromatography.
    Cantó-Mirapeix A; Herrero-Martínez JM; Baeza-Baeza JJ; Simó-Alfonso EF
    J Chromatogr A; 2009 Oct; 1216(40):6831-7. PubMed ID: 19717159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postpolymerization modification of a hydroxy monolith precursor. Part II. Epoxy biphenyl modified poly (hydroxyethyl methacrylate-co-pentaerythritol triacrylate) monolithic capillary columns for reversed-phase capillary electrochromatography based on π-π and hydrophobic interactions.
    Khadka S; El Rassi Z
    Electrophoresis; 2016 Dec; 37(23-24):3172-3177. PubMed ID: 27611813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochromatography in poly(dimethyl)siloxane microchips using organic monolithic stationary phases.
    Faure K; Blas M; Yassine O; Delaunay N; Crétier G; Albert M; Rocca JL
    Electrophoresis; 2007 Jun; 28(11):1668-73. PubMed ID: 17450536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and evaluation of lauryl methacrylate monoliths with embedded silver nanoparticles for capillary electrochromatography.
    Navarro-Pascual-Ahuir M; Lerma-García MJ; Ramis-Ramos G; Simó-Alfonso EF; Herrero-Martínez JM
    Electrophoresis; 2013 Mar; 34(6):925-34. PubMed ID: 23307496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of monolithic capillary electrochromatography and micellar electrokinetic chromatography for the separation of polycyclic aromatic hydrocarbons.
    Salwiński A; Delépée R
    Talanta; 2014 May; 122():180-6. PubMed ID: 24720981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast preparation of photopolymerized poly(benzyl methacrylate-co-bisphenol A dimethacrylate) monoliths for capillary electrochromatography.
    Ou J; Gibson GT; Oleschuk RD
    J Chromatogr A; 2010 May; 1217(22):3628-34. PubMed ID: 20394939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical initiation for butyl and lauryl acrylate monolithic columns for CEC.
    Cantó-Mirapeix A; Herrero-Martínez JM; Mongay-Fernández C; Simó-Alfonso EF
    Electrophoresis; 2009 Feb; 30(4):599-606. PubMed ID: 19170057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and evaluation of a neutral methacrylate-based monolithic column for hydrophilic interaction stationary phase by pressurized capillary electrochromatography.
    Wang X; Lin X; Xie Z; Giesy JP
    J Chromatogr A; 2009 May; 1216(21):4611-7. PubMed ID: 19342057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochromatography in cyclic olefin copolymer microchips: a step towards field portable analysis.
    Ladner Y; Crétier G; Faure K
    J Chromatogr A; 2010 Dec; 1217(51):8001-8. PubMed ID: 20800231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Microchip electrochromatography: the latest developments and applications].
    Wang J; Huang W; Li L; Cheng J
    Se Pu; 2010 Mar; 28(3):264-72. PubMed ID: 20549978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of nanoparticles in capillary and microchip electrochromatography.
    Nilsson C; Birnbaum S; Nilsson S
    J Chromatogr A; 2007 Oct; 1168(1-2):212-24; discussion 211. PubMed ID: 17719051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.