These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
525 related articles for article (PubMed ID: 17973283)
1. Ruthenium nanoparticles on nano-level-controlled carbon supports as highly effective catalysts for arene hydrogenation. Takasaki M; Motoyama Y; Higashi K; Yoon SH; Mochida I; Nagashima H Chem Asian J; 2007 Dec; 2(12):1524-33. PubMed ID: 17973283 [TBL] [Abstract][Full Text] [Related]
2. Chemoselective hydrogenation of functionalized nitroarenes and imines by using carbon nanofiber-supported iridium nanoparticles. Motoyama Y; Taguchi M; Desmira N; Yoon SH; Mochida I; Nagashima H Chem Asian J; 2014 Jan; 9(1):71-4. PubMed ID: 24347068 [TBL] [Abstract][Full Text] [Related]
3. Fast preparation of PtRu catalysts supported on carbon nanofibers by the microwave-polyol method and their application to fuel cells. Tsuji M; Kubokawa M; Yano R; Miyamae N; Tsuji T; Jun MS; Hong S; Lim S; Yoon SH; Mochida I Langmuir; 2007 Jan; 23(2):387-90. PubMed ID: 17209582 [TBL] [Abstract][Full Text] [Related]
4. Hydrogenation of p-chloronitrobenzene over nanostructured-carbon-supported ruthenium catalysts. Oubenali M; Vanucci G; Machado B; Kacimi M; Ziyad M; Faria J; Raspolli-Galetti A; Serp P ChemSusChem; 2011 Jul; 4(7):950-6. PubMed ID: 21656695 [TBL] [Abstract][Full Text] [Related]
6. Thermally reduced ruthenium nanoparticles as a highly active heterogeneous catalyst for hydrogenation of monoaromatics. Su F; Lv L; Lee FY; Liu T; Cooper AI; Zhao XS J Am Chem Soc; 2007 Nov; 129(46):14213-23. PubMed ID: 17973376 [TBL] [Abstract][Full Text] [Related]
7. Rhodium nanoparticles supported on carbon nanofibers as an arene hydrogenation catalyst highly tolerant to a coexisting epoxido group. Motoyama Y; Takasaki M; Yoon SH; Mochida I; Nagashima H Org Lett; 2009 Nov; 11(21):5042-5. PubMed ID: 19788269 [TBL] [Abstract][Full Text] [Related]
8. Chemoselective hydrogenation of nitroarenes with carbon nanofiber-supported platinum and palladium nanoparticles. Takasaki M; Motoyama Y; Higashi K; Yoon SH; Mochida I; Nagashima H Org Lett; 2008 Apr; 10(8):1601-4. PubMed ID: 18338901 [TBL] [Abstract][Full Text] [Related]
9. New benzo[h]quinoline-based ligands and their pincer Ru and Os complexes for efficient catalytic transfer hydrogenation of carbonyl compounds. Baratta W; Ballico M; Baldino S; Chelucci G; Herdtweck E; Siega K; Magnolia S; Rigo P Chemistry; 2008; 14(30):9148-60. PubMed ID: 18803204 [TBL] [Abstract][Full Text] [Related]
10. Co/CNF catalysts tailored by controlling the deposition of metal colloids onto CNFs: preparation and catalytic properties. Qiu J; Zhang H; Liang C; Li J; Zhao Z Chemistry; 2006 Mar; 12(8):2147-51. PubMed ID: 16389617 [TBL] [Abstract][Full Text] [Related]
11. Electrocatalytic oxidation of ethylene glycol on Pt and Pt-Ru nanoparticles modified multi-walled carbon nanotubes. Selvaraj V; Vinoba M; Alagar M J Colloid Interface Sci; 2008 Jun; 322(2):537-44. PubMed ID: 18402968 [TBL] [Abstract][Full Text] [Related]
12. Chiral eta(6)-arene/N-tosylethylenediamine-ruthenium(II) complexes: solution behavior and catalytic activity for asymmetric hydrogenation. Sandoval CA; Bie F; Matsuoka A; Yamaguchi Y; Naka H; Li Y; Kato K; Utsumi N; Tsutsumi K; Ohkuma T; Murata K; Noyori R Chem Asian J; 2010 Apr; 5(4):806-16. PubMed ID: 20235268 [TBL] [Abstract][Full Text] [Related]
13. Ruthenium(0) nanoclusters stabilized by a Nanozeolite framework: isolable, reusable, and green catalyst for the hydrogenation of neat aromatics under mild conditions with the unprecedented catalytic activity and lifetime. Zahmakiran M; Tonbul Y; Ozkar S J Am Chem Soc; 2010 May; 132(18):6541-9. PubMed ID: 20405831 [TBL] [Abstract][Full Text] [Related]
14. CNF-Functionalization as Versatile Tool for Tuning Activity in Cellulose-Derived Product Hydrogenation. Jouve A; Cattaneo S; Capelli S; Stucchi M; Evangelisti C; Villa A; Prati L Molecules; 2019 Jan; 24(2):. PubMed ID: 30654554 [TBL] [Abstract][Full Text] [Related]
15. Highly selective hydrogenation of carbon-carbon multiple bonds catalyzed by the cation [(C(6)Me(6))(2)Ru(2)(PPh(2))H(2)](+): molecular structure of [(C(6)Me(6))(2)Ru(2)(PPh(2))(CHCHPh)H](+), a possible intermediate in the case of phenylacetylene hydrogenation. Tschan MJ; Süss-Fink G; Chérioux F; Therrien B Chemistry; 2007; 13(1):292-9. PubMed ID: 16969773 [TBL] [Abstract][Full Text] [Related]
16. Metal particle growth during glucose hydrogenation over Ru/SiO2 evaluated by X-ray absorption spectroscopy and electron microscopy. Maris EP; Ketchie WC; Oleshko V; Davis RJ J Phys Chem B; 2006 Apr; 110(15):7869-76. PubMed ID: 16610884 [TBL] [Abstract][Full Text] [Related]
17. The partial hydrogenation of benzene to cyclohexene by nanoscale ruthenium catalysts in imidazolium ionic liquids. Silveira ET; Umpierre AP; Rossi LM; Machado G; Morais J; Soares GV; Baumvol IJ; Teixeira SR; Fichtner PF; Dupont J Chemistry; 2004 Aug; 10(15):3734-40. PubMed ID: 15281157 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical capacitances of well-defined carbon surfaces. Kim T; Lim S; Kwon K; Hong SH; Qiao W; Rhee CK; Yoon SH; Mochida I Langmuir; 2006 Oct; 22(22):9086-8. PubMed ID: 17042513 [TBL] [Abstract][Full Text] [Related]
19. Highly efficient synthesis of optically pure 5,5',6,6',7,7',8,8'-octahydro-1,1'-bi-2-naphthol and -naphthylamine derivatives by partial hydrogenation of 1,1'-binaphthyls with carbon nanofiber supported ruthenium nanoparticles. Takasaki M; Motoyama Y; Yoon SH; Mochida I; Nagashima H J Org Chem; 2007 Dec; 72(26):10291-3. PubMed ID: 18044926 [TBL] [Abstract][Full Text] [Related]
20. Synthesis, characterization, and photochemical behavior of {Ru(arene)}2+ derivatives of alpha-[PW11O39]7-: an organometallic way to ruthenium-substituted heteropolytungstates. Artero V; Laurencin D; Villanneau R; Thouvenot R; Herson P; Gouzerh P; Proust A Inorg Chem; 2005 Apr; 44(8):2826-35. PubMed ID: 15819571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]