BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 17973285)

  • 1. Energetics and mechanism of ammonia synthesis through the Chatt Cycle: conditions for a catalytic mode and comparison with the Schrock Cycle.
    Stephan GC; Sivasankar C; Studt F; Tuczek F
    Chemistry; 2008; 14(2):644-52. PubMed ID: 17973285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-principles investigation of the Schrock mechanism of dinitrogen reduction employing the full HIPTN3N ligand.
    Schenk S; Le Guennic B; Kirchner B; Reiher M
    Inorg Chem; 2008 May; 47(9):3634-50. PubMed ID: 18357978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics and mechanism of a room-temperature catalytic process for ammonia synthesis (Schrock cycle): comparison with biological nitrogen fixation.
    Studt F; Tuczek F
    Angew Chem Int Ed Engl; 2005 Sep; 44(35):5639-42. PubMed ID: 16086351
    [No Abstract]   [Full Text] [Related]  

  • 4. Why vanadium complexes perform poorly in comparison to related molybdenum complexes in the catalytic reduction of dinitrogen to ammonia (Schrock cycle): a theoretical study.
    Guha AK; Phukan AK
    Inorg Chem; 2011 Sep; 50(18):8826-33. PubMed ID: 21838226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction and protonation of Mo(IV) imido complexes with depe coligands: generation and reactivity of a S = 1/2 Mo(III) alkylnitrene intermediate.
    Dreher A; Meyer S; Näther C; Westphal A; Broda H; Sarkar B; Kaim W; Kurz P; Tuczek F
    Inorg Chem; 2013 Mar; 52(5):2335-52. PubMed ID: 23398558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free reaction enthalpy profile of the Schrock cycle derived from density functional theory calculations on the full [Mo(HIPT)N3N] catalyst.
    Thimm W; Gradert C; Broda H; Wennmohs F; Neese F; Tuczek F
    Inorg Chem; 2015 Oct; 54(19):9248-55. PubMed ID: 26107395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DFT study on chemical N2 fixation by using a cubane-type RuIr3S4 cluster: energy profile for binding and reduction of N2 to ammonia via Ru-N-NHx (x = 1-3) intermediates with unique structures.
    Tanaka H; Mori H; Seino H; Hidai M; Mizobe Y; Yoshizawa K
    J Am Chem Soc; 2008 Jul; 130(28):9037-47. PubMed ID: 18558678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center.
    Yandulov DV; Schrock RR
    Science; 2003 Jul; 301(5629):76-8. PubMed ID: 12843387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic reduction of dinitrogen to ammonia by molybdenum: theory versus experiment.
    Schrock RR
    Angew Chem Int Ed Engl; 2008; 47(30):5512-22. PubMed ID: 18537212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical study on activation and protonation of dinitrogen on cubane-type MIr3S4 clusters (M = V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Ru, and W).
    Tanaka H; Ohsako F; Seino H; Mizobe Y; Yoshizawa K
    Inorg Chem; 2010 Mar; 49(5):2464-70. PubMed ID: 20121233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural, spectroscopic, and kinetic investigation of the molybdenum dialkylhydrazido complexes [MoBr(NNC5H10)(dppe)2]Br and [Mo(NNC5H10)(dppe)2]: activation parameters and revised mechanism for N-N cleavage.
    Dreher A; Mersmann K; Näther C; Ivanovic-Burmazovic I; van Eldik R; Tuczek F
    Inorg Chem; 2009 Mar; 48(5):2078-93. PubMed ID: 19235969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and reactions of molybdenum triamidoamine complexes containing hexaisopropylterphenyl substituents.
    Yandulov DV; Schrock RR; Rheingold AL; Ceccarelli C; Davis WM
    Inorg Chem; 2003 Feb; 42(3):796-813. PubMed ID: 12562193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantum-chemical study of dinitrogen reduction at mononuclear iron-sulfur complexes with hints to the mechanism of nitrogenase.
    Reiher M; Hess BA
    Chemistry; 2002 Dec; 8(23):5332-9. PubMed ID: 12561304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A stable six-coordinate intermediate in ammonia-dinitrogen exchange at Schrock's molybdenum catalyst.
    Schenk S; Kirchner B; Reiher M
    Chemistry; 2009; 15(20):5073-82. PubMed ID: 19343768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of the sixth sulfur ligand in the catalytic mechanism of periplasmic nitrate reductase.
    Cerqueira NM; Gonzalez PJ; Brondino CD; Romão MJ; Romão CC; Moura I; Moura JJ
    J Comput Chem; 2009 Nov; 30(15):2466-84. PubMed ID: 19360810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dinitrogen activation by Fryzuk's [Nb(P(2)N(2))] complex and comparison with the Laplaza-Cummins [Mo{N(R)Ar}(3)] and Schrock [Mo(N(3)N)] systems.
    Christian GJ; Terrett RN; Stranger R; Cavigliasso G; Yates BF
    Chemistry; 2009 Oct; 15(42):11373-83. PubMed ID: 19746461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A photochemical activation scheme of inert dinitrogen by dinuclear Ru(II) and Fe(II) complexes.
    Reiher M; Kirchner B; Hutter J; Sellmann D; Hess BA
    Chemistry; 2004 Sep; 10(18):4443-53. PubMed ID: 15378622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction pathway of end-on terminally coordinated dinitrogen. V. N-N bond cleavage in Mo/W hydrazidium complexes with diphosphine coligands. Comparison with triamidoamine systems.
    Mersmann K; Horn KH; Böres N; Lehnert N; Studt F; Paulat F; Peters G; Ivanovic-Burmazovic I; van Eldik R; Tuczek F
    Inorg Chem; 2005 May; 44(9):3031-45. PubMed ID: 15847407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unusual oxidation of phosphines employing water as the oxygen atom source and tris(benzene-1,2-dithiolate)molybdenum(VI) as the oxidant. A functional molybdenum hydroxylase analogue system.
    Cervilla A; Pérez-Pla F; Llopis E; Piles M
    Inorg Chem; 2006 Sep; 45(18):7357-66. PubMed ID: 16933938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies relevant to catalytic reduction of dinitrogen to ammonia by molybdenum triamidoamine complexes.
    Yandulov DV; Schrock RR
    Inorg Chem; 2005 Feb; 44(4):1103-17. PubMed ID: 15859292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.