BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 1797336)

  • 21. Enhancement of Ca2+-induced catecholamine release by the phorbol ester TPA in digitonin-permeabilized cultured bovine adrenal chromaffin cells.
    Brocklehurst KW; Pollard HB
    FEBS Lett; 1985 Apr; 183(1):107-10. PubMed ID: 3156762
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism of the effect of droperidol to induce catecholamine efflux from the adrenal medulla.
    Sumikawa K; Hirano H; Amakata Y; Kashimoto T; Wada A; Izumi F
    Anesthesiology; 1985 Jan; 62(1):17-22. PubMed ID: 3966665
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Secretion of catecholamines from individual adrenal medullary chromaffin cells.
    Leszczyszyn DJ; Jankowski JA; Viveros OH; Diliberto EJ; Near JA; Wightman RM
    J Neurochem; 1991 Jun; 56(6):1855-63. PubMed ID: 2027003
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Milacemide, a glycine pro-drug, inhibits strychnine-allodynia without affecting normal nociception in the rat.
    Khandwala H; Loomis CW
    Pain; 1998 Jul; 77(1):87-95. PubMed ID: 9755023
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Altered reactivity of the rat adrenal medulla.
    Carbonaro DA; Mitchell JP; Hall FL; Vulliet PR
    Brain Res Bull; 1988 Sep; 21(3):451-8. PubMed ID: 3214750
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antiepileptic drug pharmacokinetics and neuropharmacokinetics in individual rats by repetitive withdrawal of blood and cerebrospinal fluid: milacemide.
    Semba J; Curzon G; Patsalos PN
    Br J Pharmacol; 1993 Apr; 108(4):1117-24. PubMed ID: 8485621
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Studies on the uptake and release of propranolol and the effects of propranolol on catecholamines in cultures of bovine adrenal chromaffin cells.
    Boksa P
    Biochem Pharmacol; 1986 Mar; 35(5):805-15. PubMed ID: 3954787
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prevention of catecholamine release from adrenal chromaffin cells by phospholipase A2- and lipoxygenase-inhibitors.
    Sasakawa N; Yamamoto S; Kumakura K; Kato R
    Jpn J Pharmacol; 1983 Oct; 33(5):1077-80. PubMed ID: 6417385
    [No Abstract]   [Full Text] [Related]  

  • 29. Milacemide, a glycine prodrug, enhances performance of learning tasks in normal and amnestic rodents.
    Handelmann GE; Nevins ME; Mueller LL; Arnolde SM; Cordi AA
    Pharmacol Biochem Behav; 1989 Dec; 34(4):823-8. PubMed ID: 2516327
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid rise in cyclic GMP accompanies catecholamine secretion in suspensions of isolated adrenal chromaffin cells.
    Schneider AS; Cline HT; Lemaire S
    Life Sci; 1979 Apr; 24(15):1389-94. PubMed ID: 225615
    [No Abstract]   [Full Text] [Related]  

  • 31. Inhibitory effect of strychnine on acetylcholine receptor activation in bovine adrenal medullary chromaffin cells.
    Kuijpers GA; Vergara LA; Calvo S; Yadid G
    Br J Pharmacol; 1994 Oct; 113(2):471-8. PubMed ID: 7834198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Steroid regulation of monoamine oxidase activity in the adrenal medulla.
    Youdim MB; Banerjee DK; Kelner K; Offutt L; Pollard HB
    FASEB J; 1989 Apr; 3(6):1753-9. PubMed ID: 2495232
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The interactions of milacemide with monoamine oxidase.
    O'Brien EM; Tipton KF; McCrodden JM; Youdim MB
    Biochem Pharmacol; 1994 Feb; 47(4):617-23. PubMed ID: 8129740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The relationship between arachidonic acid release and catecholamine secretion from cultured bovine adrenal chromaffin cells.
    Frye RA; Holz RW
    J Neurochem; 1984 Jul; 43(1):146-50. PubMed ID: 6427410
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Does FAD-dependent polyamine oxidase contribute to the metabolism of milacemide?
    Strolin Benedetti M; Cocchiara G; Colombo M; Dostert P
    J Neural Transm Suppl; 1990; 32():351-6. PubMed ID: 2128509
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of isolated chromaffin cells to study basic release mechanisms.
    Livett BG; Boksa P; Dean DM; Mizobe F; Lindenbaum MH
    J Auton Nerv Syst; 1983 Jan; 7(1):59-86. PubMed ID: 6188774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Opioid peptide synthesis in bovine and human adrenal chromaffin cells.
    Wilson SP; Chang KJ; Viveros OH
    Peptides; 1981; 2 Suppl 1():83-8. PubMed ID: 7022398
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of different anions on catecholamine release induced by tyramine and amphetamine.
    Wagner LA; Koerker RL; Schneider FH
    Biochem Pharmacol; 1973 Feb; 22(3):430-2. PubMed ID: 4687137
    [No Abstract]   [Full Text] [Related]  

  • 39. Modulation by voltage of calcium channels and adrenal catecholamine release.
    Garrido B; Abad F; GarcĂ­a AG
    Ann N Y Acad Sci; 1991; 635():459-63. PubMed ID: 1720605
    [No Abstract]   [Full Text] [Related]  

  • 40. Catecholamine release from bovine adrenal chromaffin cells during anoxia or metabolic inhibition.
    Dry KL; Phillips JH; Dart AM
    Circ Res; 1991 Aug; 69(2):466-74. PubMed ID: 1860185
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.