These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 17973460)

  • 41. Electrochemical insights into the ethanol tolerance of Saccharomyces cerevisiae.
    Wang M; Zhao J; Yang Z; Du Z; Yang Z
    Bioelectrochemistry; 2007 Nov; 71(2):107-12. PubMed ID: 17499559
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae.
    Celton M; Goelzer A; Camarasa C; Fromion V; Dequin S
    Metab Eng; 2012 Jul; 14(4):366-79. PubMed ID: 22709677
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Methionine Metabolism Alters Oxidative Stress Resistance via the Pentose Phosphate Pathway.
    Campbell K; Vowinckel J; Keller MA; Ralser M
    Antioxid Redox Signal; 2016 Apr; 24(10):543-7. PubMed ID: 26596469
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Data mining of the transcriptome of Plasmodium falciparum: the pentose phosphate pathway and ancillary processes.
    Bozdech Z; Ginsburg H
    Malar J; 2005 Mar; 4():17. PubMed ID: 15774020
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Saccharomyces cerevisiae zinc factor protein Stb5p is required as a basal regulator of the pentose phosphate pathway.
    Cadière A; Galeote V; Dequin S
    FEMS Yeast Res; 2010 Nov; 10(7):819-27. PubMed ID: 20738406
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reversing the directionality of reactions between non-oxidative pentose phosphate pathway and glycolytic pathway boosts mycosporine-like amino acid production in Saccharomyces cerevisiae.
    Hengardi MT; Liang C; Madivannan K; Yang LK; Koduru L; Kanagasundaram Y; Arumugam P
    Microb Cell Fact; 2024 May; 23(1):121. PubMed ID: 38725068
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In Saccharomyces cerevisiae deletion of phosphoglucose isomerase can be suppressed by increased activities of enzymes of the hexose monophosphate pathway.
    Dickinson JR; Sobanski MA; Hewlins MJ
    Microbiology (Reading); 1995 Feb; 141 ( Pt 2)():385-91. PubMed ID: 7704269
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability.
    Moreira dos Santos M; Thygesen G; Kötter P; Olsson L; Nielsen J
    FEMS Yeast Res; 2003 Oct; 4(1):59-68. PubMed ID: 14554197
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae.
    Vaseghi S; Baumeister A; Rizzi M; Reuss M
    Metab Eng; 1999 Apr; 1(2):128-40. PubMed ID: 10935926
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Conservation of glycolytic oscillations in Saccharomyces cerevisiae and human pancreatic beta-cells: a study of metabolic robustness.
    Silva AS; Yunes JA
    Genet Mol Res; 2006 Aug; 5(3):525-35. PubMed ID: 17117368
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation.
    Pham TK; Wright PC
    J Proteome Res; 2008 Nov; 7(11):4766-74. PubMed ID: 18808174
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of Gts1p in regulation of energy-metabolism oscillation in continuous cultures of the yeast Saccharomyces cerevisiae.
    Xu Z; Tsurugi K
    Yeast; 2007 Mar; 24(3):161-70. PubMed ID: 17351907
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Pentose Phosphate Pathway in Yeasts-More Than a Poor Cousin of Glycolysis.
    Bertels LK; Fernández Murillo L; Heinisch JJ
    Biomolecules; 2021 May; 11(5):. PubMed ID: 34065948
    [TBL] [Abstract][Full Text] [Related]  

  • 54. NADPH production by the pentose phosphate pathway in the zona fasciculata of rat adrenal gland.
    Frederiks WM; Kümmerlin IP; Bosch KS; Vreeling-Sindelárová H; Jonker A; Van Noorden CJ
    J Histochem Cytochem; 2007 Sep; 55(9):975-80. PubMed ID: 17533217
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transaldolase deficiency influences the pentose phosphate pathway, mitochondrial homoeostasis and apoptosis signal processing.
    Qian Y; Banerjee S; Grossman CE; Amidon W; Nagy G; Barcza M; Niland B; Karp DR; Middleton FA; Banki K; Perl A
    Biochem J; 2008 Oct; 415(1):123-34. PubMed ID: 18498245
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Human red cell metabolism and its pathophysiology].
    Hirono A; Miwa S
    Nihon Rinsho; 1996 Sep; 54(9):2326-30. PubMed ID: 8890558
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in Saccharomyces cerevisiae.
    Laadan B; Almeida JR; Rådström P; Hahn-Hägerdal B; Gorwa-Grauslund M
    Yeast; 2008 Mar; 25(3):191-8. PubMed ID: 18302314
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metabolic flux screening of Saccharomyces cerevisiae single knockout strains on glucose and galactose supports elucidation of gene function.
    Velagapudi VR; Wittmann C; Schneider K; Heinzle E
    J Biotechnol; 2007 Dec; 132(4):395-404. PubMed ID: 17919760
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of glutathione reductase in the interplay between oxidative stress response and turnover of cytosolic NADPH in Kluyveromyces lactis.
    Tarrío N; García-Leiro A; Cerdán ME; González-Siso MI
    FEMS Yeast Res; 2008 Jun; 8(4):597-606. PubMed ID: 18318708
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 13C-Labeled metabolic flux analysis of a fed-batch culture of elutriated Saccharomyces cerevisiae.
    Costenoble R; Müller D; Barl T; van Gulik WM; van Winden WA; Reuss M; Heijnen JJ
    FEMS Yeast Res; 2007 Jun; 7(4):511-26. PubMed ID: 17355600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.