BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1797348)

  • 21. Functional organization of trigeminal subnucleus interpolaris: nociceptive and innocuous afferent inputs, projections to thalamus, cerebellum, and spinal cord, and descending modulation from periaqueductal gray.
    Hayashi H; Sumino R; Sessle BJ
    J Neurophysiol; 1984 May; 51(5):890-905. PubMed ID: 6726316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ventrolateral and dorsolateral ascending spinal cord pathway influence on thalamic nociception in cat.
    Martin RJ; Apkarian AV; Hodge CJ
    J Neurophysiol; 1990 Nov; 64(5):1400-12. PubMed ID: 2178182
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nociceptive body representation in nucleus ventralis posterolateralis of cat thalamus.
    Yokota T; Asato F; Koyama N; Masuda T; Taguchi H
    J Neurophysiol; 1988 Nov; 60(5):1714-27. PubMed ID: 3058880
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Brainstem influences on transmission of somatosensory information in the spinocervicothalamic pathway.
    Dostrovsky JO
    Brain Res; 1984 Feb; 292(2):229-38. PubMed ID: 6692156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dissociated mesencephalic responses to medial and ventral thalamic nuclei stimulation in rats. Relationship to analgesic mechanisms.
    Sakata S; Shima F; Kato M; Fukui M
    J Neurosurg; 1989 Mar; 70(3):446-53. PubMed ID: 2915252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of periaqueductal gray and raphe magnus stimulation on the responses of spinocervical and other ascending projection neurons to non-noxious inputs.
    Kajander KC; Ebner TJ; Bloedel JR
    Brain Res; 1984 Jan; 291(1):29-37. PubMed ID: 6697183
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nucleus ventralis posteromedialis neurons relaying somatosensory lingual input to the cerebral cortex in the cat.
    Nishikawa Y; Hasegawa A; Koyama N; Yokota T
    Brain Res; 1993 Mar; 605(2):265-70. PubMed ID: 8481776
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of the responses of neurons in the rat spinal cord to noxious skin heating by stimulation in midbrain periaqueductal gray or lateral reticular formation.
    Carstens E; Watkins LR
    Brain Res; 1986 Sep; 382(2):266-77. PubMed ID: 3756519
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two forms of inhibition of spinothalamic tract neurons produced by stimulation of the periaqueductal gray and the cerebral cortex.
    Zhang DX; Owens CM; Willis WD
    J Neurophysiol; 1991 Jun; 65(6):1567-79. PubMed ID: 1875263
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tooth pulp input to the shell region of nucleus ventralis posteromedialis of the cat thalamus.
    Yokota T; Nishikawa Y; Koyama N
    J Neurophysiol; 1986 Jul; 56(1):80-98. PubMed ID: 3018186
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of 5-HT3 receptors in periaqueductal gray-induced inhibition of nociceptive dorsal horn neurons in rats.
    Peng YB; Lin Q; Willis WD
    J Pharmacol Exp Ther; 1996 Jan; 276(1):116-24. PubMed ID: 8558419
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Responses of neurons in VPL and VPL-VL region of the cat to algesic stimulation of muscle and tendon.
    Kniffki KD; Mizumura K
    J Neurophysiol; 1983 Mar; 49(3):649-61. PubMed ID: 6834092
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Periaqueductal gray and cerebral cortex modulate responses of medial thalamic neurons to noxious stimulation.
    Andersen E
    Brain Res; 1986 Jun; 375(1):30-6. PubMed ID: 3719357
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Knee joint input into the peripheral region of the ventral posterior lateral nucleus of cat thalamus.
    Hutchison WD; Lühn MA; Schmidt RF
    J Neurophysiol; 1992 May; 67(5):1092-104. PubMed ID: 1597699
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential inhibitory effects of medial and lateral midbrain stimulation on spinal neuronal discharges to noxious skin heating in the cat.
    Carstens E; Klumpp D; Zimmermann M
    J Neurophysiol; 1980 Feb; 43(2):332-42. PubMed ID: 7381524
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of focal stimulation in nucleus raphe magnus and periaqueductal gray on intracellularly recorded neurons in spinal laminae I and II.
    Light AR; Casale EJ; Menétrey DM
    J Neurophysiol; 1986 Sep; 56(3):555-71. PubMed ID: 3783212
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Effect of stimulating midbrain periaqueductal gray on the electrical response of somatosensory cortex to C-fiber input in cats].
    Wang BQ; Chen PX
    Sheng Li Xue Bao; 1990 Jun; 42(3):241-7. PubMed ID: 2082468
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of chemical and electrical stimulation of the midbrain on feline T2-T6 spinoreticular and spinal cell activity evoked by cardiopulmonary afferent input.
    Chandler MJ; Garrison DW; Brennan TJ; Foreman RD
    Brain Res; 1989 Sep; 496(1-2):148-64. PubMed ID: 2804627
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Periaqueductal grey projection to the ventrobasal complex in the cat: an horseradish peroxidase study.
    Barbaresi P; Conti F; Manzoni T
    Neurosci Lett; 1982 Jun; 30(3):205-9. PubMed ID: 6180360
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of the basolateral nucleus of the amygdala in the pathway between the amygdala and the midbrain periaqueductal gray in the rat.
    Da Costa Gomez TM; Chandler SD; Behbehani MM
    Neurosci Lett; 1996 Aug; 214(1):5-8. PubMed ID: 8873118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.