These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 17973498)
21. Probing amide bond nitrogens in solids using 14N NMR spectroscopy. Antonijevic S; Halpern-Manners N Solid State Nucl Magn Reson; 2008 May; 33(4):82-7. PubMed ID: 18515050 [TBL] [Abstract][Full Text] [Related]
22. Secondary organic aerosol formation from multiphase oxidation of limonene by ozone: mechanistic constraints via two-dimensional heteronuclear NMR spectroscopy. Maksymiuk CS; Gayahtri C; Gil RR; Donahue NM Phys Chem Chem Phys; 2009 Sep; 11(36):7810-8. PubMed ID: 19727487 [TBL] [Abstract][Full Text] [Related]
23. In situ nucleophilic substitution reaction of N,N-dialkylaminoethyl-2-chlorides monitored by gas chromatography/mass spectrometry. Lakshmi VV; Reddy TJ; Murty MR; Prabhakar S; Vairamani M Rapid Commun Mass Spectrom; 2006; 20(14):2209-14. PubMed ID: 16791867 [TBL] [Abstract][Full Text] [Related]
24. Solid-Phase Detoxification of Chemical Warfare Agents using Zirconium-Based Metal Organic Frameworks and the Moisture Effects: Analyze via Digestion. Wang H; Mahle JJ; Tovar TM; Peterson GW; Hall MG; DeCoste JB; Buchanan JH; Karwacki CJ ACS Appl Mater Interfaces; 2019 Jun; 11(23):21109-21116. PubMed ID: 31117457 [TBL] [Abstract][Full Text] [Related]
25. Determination of basic degradation products of chemical warfare agents in water using hollow fibre-protected liquid-phase microextraction with in-situ derivatisation followed by gas chromatography-mass spectrometry. Lee HS; Sng MT; Basheer C; Lee HK J Chromatogr A; 2008 Jul; 1196-1197():125-32. PubMed ID: 18456273 [TBL] [Abstract][Full Text] [Related]
26. Miniaturized low-cost ion mobility spectrometer for fast detection of chemical warfare agents. Zimmermann S; Barth S; Baether WK; Ringer J Anal Chem; 2008 Sep; 80(17):6671-6. PubMed ID: 18665610 [TBL] [Abstract][Full Text] [Related]
27. Towards catch-up therapy: evaluation of nucleophilic active pharmaceutical ingredients for the treatment of percutaneous VX poisoning, in-vial and in-vitro studies. Nahum V; Nili U; Bloch-Shilderman E; Smolkin B; Ashkenazi N Int J Pharm; 2021 Jun; 603():120689. PubMed ID: 33965544 [TBL] [Abstract][Full Text] [Related]
28. Impedance based detection of chemical warfare agent mimics using ferrocene-lysine modified carbon nanotubes. Diakowski PM; Xiao Y; Petryk MW; Kraatz HB Anal Chem; 2010 Apr; 82(8):3191-7. PubMed ID: 20329758 [TBL] [Abstract][Full Text] [Related]
29. Source Attribution of the Chemical Warfare Agent Soman Using Position-Specific Isotope Analysis by Lindberg S; Engqvist M; Mörén L; Åstot C; Norlin R Anal Chem; 2021 Sep; 93(36):12230-12236. PubMed ID: 34469120 [TBL] [Abstract][Full Text] [Related]
30. Noncovalent modification of carbon nanotubes with ferrocene-amino acid conjugates for electrochemical sensing of chemical warfare agent mimics. Khan MA; Kerman K; Petryk M; Kraatz HB Anal Chem; 2008 Apr; 80(7):2574-82. PubMed ID: 18298097 [TBL] [Abstract][Full Text] [Related]
31. Detailed investigation of the radical-induced destruction of chemical warfare agent simulants in aqueous solution. Abbott A; Sierakowski T; Kiddle JJ; Clark KK; Mezyk SP J Phys Chem B; 2010 Jun; 114(22):7681-5. PubMed ID: 20469938 [TBL] [Abstract][Full Text] [Related]
32. Study of Decomposition of Chemical Warfare Agents using Solid Decontamination Substances. Capoun T; Krykorkova J Toxics; 2019 Dec; 7(4):. PubMed ID: 31817905 [TBL] [Abstract][Full Text] [Related]
33. Rapid activation of basic hydrogen peroxide by borate and efficient destruction of toxic industrial chemicals (TICs) and chemical warfare agents (CWAs). Zhao S; Xi H; Zuo Y; Han S; Zhu Y; Li Z; Yuan L; Wang Z; Liu C J Hazard Mater; 2019 Apr; 367():91-98. PubMed ID: 30594727 [TBL] [Abstract][Full Text] [Related]
34. Degradation of nerve agents by an organophosphate-degrading agent (OpdA). Dawson RM; Pantelidis S; Rose HR; Kotsonis SE J Hazard Mater; 2008 Sep; 157(2-3):308-14. PubMed ID: 18258361 [TBL] [Abstract][Full Text] [Related]
35. Mass spectrometric study of selected precursors and degradation products of chemical warfare agents. Papousková B; Bednár P; Frysová I; Stýskala J; Hlavác J; Barták P; Ulrichová J; Jirkovský J; Lemr K J Mass Spectrom; 2007 Dec; 42(12):1550-61. PubMed ID: 18085550 [TBL] [Abstract][Full Text] [Related]
36. Detection of chemical warfare agent degradation products in foods using liquid chromatography coupled to inductively coupled plasma mass spectrometry and electrospray ionization mass spectrometry. Kubachka KM; Richardson DD; Heitkemper DT; Caruso JA J Chromatogr A; 2008 Aug; 1202(2):124-31. PubMed ID: 18644601 [TBL] [Abstract][Full Text] [Related]
37. Molecularly imprinted polymer-based potentiometric sensor for degradation product of chemical warfare agents. Part I. Methylphosphonic acid. Prathish KP; Prasad K; Rao TP; Suryanarayana MV Talanta; 2007 Mar; 71(5):1976-80. PubMed ID: 19071551 [TBL] [Abstract][Full Text] [Related]
38. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants. Martin AN; Farquar GR; Frank M; Gard EE; Fergenson DP Anal Chem; 2007 Aug; 79(16):6368-75. PubMed ID: 17630721 [TBL] [Abstract][Full Text] [Related]
39. Heteronuclear 1H-31P statistical total correlation NMR spectroscopy of intact liver for metabolic biomarker assignment: application to galactosamine-induced hepatotoxicity. Coen M; Hong YS; Cloarec O; Rhode CM; Reily MD; Robertson DG; Holmes E; Lindon JC; Nicholson JK Anal Chem; 2007 Dec; 79(23):8956-66. PubMed ID: 17973499 [TBL] [Abstract][Full Text] [Related]
40. Application of nonselective 1D (1)H-(31)P inverse NMR spectroscopy to the screening of solutions for the presence of organophosphorus compounds related to the chemical weapons convention. Meier UC Anal Chem; 2004 Jan; 76(2):392-8. PubMed ID: 14719888 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]