These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 17974215)

  • 1. [Sucrose as a factor of thermal adaptation of the thermophilic methanotroph Methylocaldum szegediense O-12].
    Medvedkova KA; Khmelenina VN; Trotsenko IuA
    Mikrobiologiia; 2007; 76(4):567-9. PubMed ID: 17974215
    [No Abstract]   [Full Text] [Related]  

  • 2. The genes and enzymes of sucrose metabolism in moderately thermophilic methanotroph Methylocaldum szegediense O12.
    But SY; Solntseva NP; Egorova SV; Mustakhimov II; Khmelenina VN; Reshetnikov A; Trotsenko YA
    Extremophiles; 2018 May; 22(3):433-445. PubMed ID: 29442248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Synthesis of melanin by a moderately thermophilic methanotroph Methylocaldum szegediense depends on cultivation temperature].
    Medvedkova KA; Khmelenina VN; Baskunov BP; Trotsenko IuA
    Mikrobiologiia; 2008; 77(1):126-8. PubMed ID: 18365731
    [No Abstract]   [Full Text] [Related]  

  • 4. Structural and biochemical studies of a moderately thermophilic exonuclease I from Methylocaldum szegediense.
    Fei L; Tian S; Moysey R; Misca M; Barker JJ; Smith MA; McEwan PA; Pilka ES; Crawley L; Evans T; Sun D
    PLoS One; 2015; 10(2):e0117470. PubMed ID: 25658953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic Insights into Moderately Thermophilic Methanotrophs of the Genus
    Delherbe NA; Pearce D; But SY; Murrell JC; Khmelenina VN; Kalyuzhnaya MG
    Microorganisms; 2024 Feb; 12(3):. PubMed ID: 38543520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. No evidence for compensatory thermal adaptation of soil microbial respiration in the study of Bradford et al. (2008).
    Hartley IP; Hopkins DW; Garnett MH; Sommerkorn M; Wookey PA
    Ecol Lett; 2009 Jul; 12(7):E12-4; discussion E15-8. PubMed ID: 19527269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Thermophilic and thermotolerant aerobic methanotrophs].
    Trotsenko IuA; Medvedkova KA; Khmelenina VN; Eshinimaev BTs
    Mikrobiologiia; 2009; 78(4):435-50. PubMed ID: 19827708
    [No Abstract]   [Full Text] [Related]  

  • 8. Complete genome sequences of
    Pearce D; Brooks E; Wright C; Rankin D; Crombie AT; Murrell JC
    Microbiol Resour Announc; 2024 Feb; 13(2):e0067523. PubMed ID: 38236040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gaining and losing the thermophilic adaptation in prokaryotes.
    Puigbò P; Pasamontes A; Garcia-Vallve S
    Trends Genet; 2008 Jan; 24(1):10-4. PubMed ID: 18054113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How does gene expression level contribute to thermophilic adaptation of prokaryotes? An exploration based on predictors.
    Wang J; Ma BG; Zhang HY; Chen LL; Zhang SC
    Gene; 2008 Sep; 421(1-2):32-6. PubMed ID: 18621118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Production and characterization of Methylomicrobium alcaliphilum 20Z knockout mutants, which has sucrose and ectoin synthesis defective genes].
    But SIu; Khmelina VN; Mustakhimova II; Trotsenko IuA
    Mikrobiologiia; 2013; 82(2):251-3. PubMed ID: 23808151
    [No Abstract]   [Full Text] [Related]  

  • 12. Rice roots select for type I methanotrophs in rice field soil.
    Wu L; Ma K; Lu Y
    Syst Appl Microbiol; 2009 Sep; 32(6):421-8. PubMed ID: 19481894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of thermal physiology in Liolaemus lizards: adaptation, phylogenetic inertia, and niche tracking.
    Labra A; Pienaar J; Hansen TF
    Am Nat; 2009 Aug; 174(2):204-20. PubMed ID: 19538089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial diversity in sediments associated with a shallow methane seep in the tropical Timor Sea of Australia reveals a novel aerobic methanotroph diversity.
    Wasmund K; Kurtböke DI; Burns KA; Bourne DG
    FEMS Microbiol Ecol; 2009 May; 68(2):142-51. PubMed ID: 19573197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfate reduction at pH 4 during the thermophilic (55 degrees C) acidification of sucrose in UASB reactors.
    Lopes SI; Capela MI; Dar SA; Muyzer G; Lens PN
    Biotechnol Prog; 2008; 24(6):1278-89. PubMed ID: 19194942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal adaptation of soil microbial respiration to elevated temperature.
    Bradford MA; Davies CA; Frey SD; Maddox TR; Melillo JM; Mohan JE; Reynolds JF; Treseder KK; Wallenstein MD
    Ecol Lett; 2008 Dec; 11(12):1316-27. PubMed ID: 19046360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using a strategy based on the concept of convergent evolution to identify residue substitutions responsible for thermal adaptation.
    Lin YS
    Proteins; 2008 Oct; 73(1):53-62. PubMed ID: 18384082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of flavonoid o-glucoside using sucrose synthase and flavonoid o-glucosyltransferase fusion protein.
    Son MH; Kim BG; Kim DH; Jin M; Kim K; Ahn JH
    J Microbiol Biotechnol; 2009 Jul; 19(7):709-12. PubMed ID: 19652519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of C. elegans thermotactic behavior in a linear thermal gradient using a simple phenomenological motility model.
    Matsuoka T; Gomi S; Shingai R
    J Theor Biol; 2008 Jan; 250(2):230-43. PubMed ID: 18005996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrolysis of sucrose using sulfonated poly(vinyl alcohol) as catalyst.
    Pito DS; Fonseca IM; Ramos AM; Vital J; Castanheiro JE
    Bioresour Technol; 2009 Oct; 100(20):4546-50. PubMed ID: 19464882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.