These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 17974340)

  • 41. Abiotic proxies for predictive mapping of nearshore benthic assemblages: implications for marine spatial planning.
    McHenry J; Steneck RS; Brady DC
    Ecol Appl; 2017 Mar; 27(2):603-618. PubMed ID: 27862606
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evidence for seasonal cycles in deep-sea fish abundances: A great migration in the deep SE Atlantic?
    Milligan RJ; Scott EM; Jones DOB; Bett BJ; Jamieson AJ; O'Brien R; Pereira Costa S; Rowe GT; Ruhl HA; Smith KL; de Susanne P; Vardaro MF; Bailey DM
    J Anim Ecol; 2020 Jul; 89(7):1593-1603. PubMed ID: 32198925
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hard-bottom habitats support commercially important fish species: a systematic review for the North Atlantic Ocean and Baltic Sea.
    Flávio H; Seitz R; Eggleston D; Svendsen JC; Støttrup J
    PeerJ; 2023; 11():e14681. PubMed ID: 36684681
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Marine heatwaves are not a dominant driver of change in demersal fishes.
    Fredston AL; Cheung WWL; Frölicher TL; Kitchel ZJ; Maureaud AA; Thorson JT; Auber A; Mérigot B; Palacios-Abrantes J; Palomares MLD; Pecuchet L; Shackell NL; Pinsky ML
    Nature; 2023 Sep; 621(7978):324-329. PubMed ID: 37648851
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Qualitative assessment of climate-driven ecological shifts in the Caspian Sea.
    Beyraghdar Kashkooli O; Gröger J; Núñez-Riboni I
    PLoS One; 2017; 12(5):e0176892. PubMed ID: 28475609
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional roles and redundancy of demersal Barents Sea fish: Ecological implications of environmental change.
    Aune M; Aschan MM; Greenacre M; Dolgov AV; Fossheim M; Primicerio R
    PLoS One; 2018; 13(11):e0207451. PubMed ID: 30462696
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ecosystem regime shifts disrupt trophic structure.
    Hempson TN; Graham NAJ; MacNeil MA; Hoey AS; Wilson SK
    Ecol Appl; 2018 Jan; 28(1):191-200. PubMed ID: 29035010
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Vertical ecology of the pelagic ocean: classical patterns and new perspectives.
    Sutton TT
    J Fish Biol; 2013 Dec; 83(6):1508-27. PubMed ID: 24298949
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Food web ecology of Gulf Stream flounder (Citharichthys arctifrons): a continental shelf perspective.
    Rowe S; Smith BE
    J Fish Biol; 2022 Nov; 101(5):1199-1209. PubMed ID: 36054611
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rapid worldwide depletion of predatory fish communities.
    Myers RA; Worm B
    Nature; 2003 May; 423(6937):280-3. PubMed ID: 12748640
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Using marine reserves to manage impact of bottom trawl fisheries requires consideration of benthic food-web interactions.
    van Denderen PD; Rijnsdorp AD; van Kooten T
    Ecol Appl; 2016 Oct; 26(7):2302-2310. PubMed ID: 27755714
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stable isotope analyses revealed the influence of foraging habitat on mercury accumulation in tropical coastal marine fish.
    Le Croizier G; Schaal G; Point D; Le Loc'h F; Machu E; Fall M; Munaron JM; Boyé A; Walter P; Laë R; Tito De Morais L
    Sci Total Environ; 2019 Feb; 650(Pt 2):2129-2140. PubMed ID: 30290354
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predatory zooplankton on the move: Themisto amphipods in high-latitude marine pelagic food webs.
    Havermans C; Auel H; Hagen W; Held C; Ensor NS; A Tarling G
    Adv Mar Biol; 2019; 82():51-92. PubMed ID: 31229150
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biodiversity enhances reef fish biomass and resistance to climate change.
    Duffy JE; Lefcheck JS; Stuart-Smith RD; Navarrete SA; Edgar GJ
    Proc Natl Acad Sci U S A; 2016 May; 113(22):6230-5. PubMed ID: 27185921
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fish wariness is a more sensitive indicator to changes in fishing pressure than abundance, length or biomass.
    Goetze JS; Januchowski-Hartley FA; Claudet J; Langlois TJ; Wilson SK; Jupiter SD
    Ecol Appl; 2017 Jun; 27(4):1178-1189. PubMed ID: 28140527
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Functional responses and scaling in predator-prey interactions of marine fishes: contemporary issues and emerging concepts.
    Hunsicker ME; Ciannelli L; Bailey KM; Buckel JA; Wilson White J; Link JS; Essington TE; Gaichas S; Anderson TW; Brodeur RD; Chan KS; Chen K; Englund G; Frank KT; Freitas V; Hixon MA; Hurst T; Johnson DW; Kitchell JF; Reese D; Rose GA; Sjodin H; Sydeman WJ; van der Veer HW; Vollset K; Zador S
    Ecol Lett; 2011 Dec; 14(12):1288-99. PubMed ID: 21985428
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Beyond classic ecological assessment: The use of functional indices to indicate fish assemblages sensitivity to human disturbance in estuaries.
    Teichert N; Lepage M; Lobry J
    Sci Total Environ; 2018 Oct; 639():465-475. PubMed ID: 29800840
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Marine parasites as biological tags in South American Atlantic waters, current status and perspectives.
    Cantatore DM; Timi JT
    Parasitology; 2015 Jan; 142(1):5-24. PubMed ID: 24477070
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Global patterns in marine predatory fish.
    van Denderen PD; Lindegren M; MacKenzie BR; Watson RA; Andersen KH
    Nat Ecol Evol; 2018 Jan; 2(1):65-70. PubMed ID: 29180711
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Advancing the use of local ecological knowledge for assessing data-poor species in coastal ecosystems.
    Beaudreau AH; Levin PS
    Ecol Appl; 2014 Mar; 24(2):244-56. PubMed ID: 24689138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.