BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 17974587)

  • 21. Ca2+ sparks and T tubule reorganization in dedifferentiating adult mouse skeletal muscle fibers.
    Brown LD; Rodney GG; Hernández-Ochoa E; Ward CW; Schneider MF
    Am J Physiol Cell Physiol; 2007 Mar; 292(3):C1156-66. PubMed ID: 17065203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A probable role of dihydropyridine receptors in repression of Ca2+ sparks demonstrated in cultured mammalian muscle.
    Zhou J; Yi J; Royer L; Launikonis BS; González A; García J; Ríos E
    Am J Physiol Cell Physiol; 2006 Feb; 290(2):C539-53. PubMed ID: 16148029
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Initiation and termination of calcium sparks in skeletal muscle.
    Schneider MF; Ward CW
    Front Biosci; 2002 May; 7():d1212-22. PubMed ID: 11991854
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle.
    Wang X; Weisleder N; Collet C; Zhou J; Chu Y; Hirata Y; Zhao X; Pan Z; Brotto M; Cheng H; Ma J
    Nat Cell Biol; 2005 May; 7(5):525-30. PubMed ID: 15834406
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ischemia Enhances the Acute Stretch-Induced Increase in Calcium Spark Rate in Ventricular Myocytes.
    Cameron BA; Kai H; Kaihara K; Iribe G; Quinn TA
    Front Physiol; 2020; 11():289. PubMed ID: 32372969
    [No Abstract]   [Full Text] [Related]  

  • 26. Effect of osmotic stress on spontaneous calcium sparks in rat ventricular myocytes.
    Xie H; Zhu PH
    Acta Pharmacol Sin; 2006 Jul; 27(7):877-87. PubMed ID: 16787572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acute effects of reactive oxygen and nitrogen species on the contractile function of skeletal muscle.
    Lamb GD; Westerblad H
    J Physiol; 2011 May; 589(Pt 9):2119-27. PubMed ID: 21041533
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of xanthine oxidase in the acute phase of myocardial infarction prevents skeletal muscle abnormalities and exercise intolerance.
    Nambu H; Takada S; Maekawa S; Matsumoto J; Kakutani N; Furihata T; Shirakawa R; Katayama T; Nakajima T; Yamanashi K; Obata Y; Nakano I; Tsuda M; Saito A; Fukushima A; Yokota T; Nio-Kobayashi J; Yasui H; Higashikawa K; Kuge Y; Anzai T; Sabe H; Kinugawa S
    Cardiovasc Res; 2021 Feb; 117(3):805-819. PubMed ID: 32402072
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of osmotic stress induced Ca2+ spark termination in mammalian skeletal muscle.
    Ferrante C; Szappanos H; Csernoch L; Weisleder N
    Indian J Biochem Biophys; 2013 Oct; 50(5):411-8. PubMed ID: 24772962
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of simulated and measured calcium sparks in intact skeletal muscle fibers of the frog.
    Baylor SM; Hollingworth S; Chandler WK
    J Gen Physiol; 2002 Sep; 120(3):349-68. PubMed ID: 12198091
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transforming growth factor type beta (TGF-β) requires reactive oxygen species to induce skeletal muscle atrophy.
    Abrigo J; Rivera JC; Simon F; Cabrera D; Cabello-Verrugio C
    Cell Signal; 2016 May; 28(5):366-376. PubMed ID: 26825874
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydroxyl radical and glutathione interactions alter calcium sensitivity and maximum force of the contractile apparatus in rat skeletal muscle fibres.
    Murphy RM; Dutka TL; Lamb GD
    J Physiol; 2008 Apr; 586(8):2203-16. PubMed ID: 18308823
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interdomain interactions within ryanodine receptors regulate Ca2+ spark frequency in skeletal muscle.
    Shtifman A; Ward CW; Yamamoto T; Wang J; Olbinski B; Valdivia HH; Ikemoto N; Schneider MF
    J Gen Physiol; 2002 Jan; 119(1):15-32. PubMed ID: 11773235
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative tests reveal that microtubules tune the healthy heart but underlie arrhythmias in pathology.
    Joca HC; Coleman AK; Ward CW; Williams GSB
    J Physiol; 2020 Apr; 598(7):1327-1338. PubMed ID: 30582750
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NADPH oxidase and hydrogen peroxide mediate insulin-induced calcium increase in skeletal muscle cells.
    Espinosa A; García A; Härtel S; Hidalgo C; Jaimovich E
    J Biol Chem; 2009 Jan; 284(4):2568-75. PubMed ID: 19028699
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reactive oxygen species induce a Ca(2+)-spark increase in sensitized murine airway smooth muscle cells.
    Tuo QR; Ma YF; Chen W; Luo XJ; Shen J; Guo D; Zheng YM; Wang YX; Ji G; Liu QH
    Biochem Biophys Res Commun; 2013 May; 434(3):498-502. PubMed ID: 23583396
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antioxidant treatments do not improve force recovery after fatiguing stimulation of mouse skeletal muscle fibres.
    Cheng AJ; Bruton JD; Lanner JT; Westerblad H
    J Physiol; 2015 Jan; 593(2):457-72. PubMed ID: 25630265
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Between channels and tears: aim at ROS to save the membrane of dystrophic fibres.
    Reggiani C
    J Physiol; 2008 Apr; 586(7):1779. PubMed ID: 18381339
    [No Abstract]   [Full Text] [Related]  

  • 39. NOX2-dependent ROS is required for HDAC5 nuclear efflux and contributes to HDAC4 nuclear efflux during intense repetitive activity of fast skeletal muscle fibers.
    Liu Y; Hernández-Ochoa EO; Randall WR; Schneider MF
    Am J Physiol Cell Physiol; 2012 Aug; 303(3):C334-47. PubMed ID: 22648949
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical stretch-induced activation of ROS/RNS signaling in striated muscle.
    Ward CW; Prosser BL; Lederer WJ
    Antioxid Redox Signal; 2014 Feb; 20(6):929-36. PubMed ID: 23971496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.