These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 17974591)

  • 1. Influences of sensory input from the limbs on feline corticospinal neurons during postural responses.
    Karayannidou A; Deliagina TG; Tamarova ZA; Sirota MG; Zelenin PV; Orlovsky GN; Beloozerova IN
    J Physiol; 2008 Jan; 586(1):247-63. PubMed ID: 17974591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity of pyramidal tract neurons in the cat during standing and walking on an inclined plane.
    Karayannidou A; Beloozerova IN; Zelenin PV; Stout EE; Sirota MG; Orlovsky GN; Deliagina TG
    J Physiol; 2009 Aug; 587(Pt 15):3795-811. PubMed ID: 19491244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity of red nucleus neurons in the cat during postural corrections.
    Zelenin PV; Beloozerova IN; Sirota MG; Orlovsky GN; Deliagina TG
    J Neurosci; 2010 Oct; 30(43):14533-42. PubMed ID: 20980611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity of pyramidal tract neurons in the cat during postural corrections.
    Beloozerova IN; Sirota MG; Orlovsky GN; Deliagina TG
    J Neurophysiol; 2005 Apr; 93(4):1831-44. PubMed ID: 15525811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A motor cortical contribution to the anticipatory postural adjustments that precede reaching in the cat.
    Yakovenko S; Drew T
    J Neurophysiol; 2009 Aug; 102(2):853-74. PubMed ID: 19458152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of activity of individual pyramidal tract neurons during balancing, locomotion, and scratching.
    Beloozerova IN; Sirota MG; Orlovsky GN; Deliagina TG
    Behav Brain Res; 2006 Apr; 169(1):98-110. PubMed ID: 16445992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory response properties of pyramidal tract neurons in the precentral motor cortex and postcentral gyrus of the rhesus monkey.
    Fromm C; Wise SP; Evarts EV
    Exp Brain Res; 1984; 54(1):177-85. PubMed ID: 6698144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Putative spinal interneurons mediating postural limb reflexes provide a basis for postural control in different planes.
    Zelenin PV; Hsu LJ; Lyalka VF; Orlovsky GN; Deliagina TG
    Eur J Neurosci; 2015 Jan; 41(2):168-81. PubMed ID: 25370349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity of different classes of neurons of the motor cortex during postural corrections.
    Beloozerova IN; Sirota MG; Swadlow HA; Orlovsky GN; Popova LB; Deliagina TG
    J Neurosci; 2003 Aug; 23(21):7844-53. PubMed ID: 12944514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in posturo-kinetic limb responses to cortical stimulation following unilateral neck deafferentation in the cat.
    Gahéry Y; Pompeiano O; Coulmance M
    Arch Ital Biol; 1984 Jun; 122(2):129-54. PubMed ID: 6477028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interlimb postural coordination in the standing cat.
    Deliagina TG; Sirota MG; Zelenin PV; Orlovsky GN; Beloozerova IN
    J Physiol; 2006 May; 573(Pt 1):211-24. PubMed ID: 16527856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of GABA A inhibition in modulation of pyramidal tract neuron activity during postural corrections.
    Tamarova ZA; Sirota MG; Orlovsky GN; Deliagina TG; Beloozerova IN
    Eur J Neurosci; 2007 Mar; 25(5):1484-91. PubMed ID: 17425574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyramidal tract neurons receptive to different forelimb joints act differently during locomotion.
    Stout EE; Beloozerova IN
    J Neurophysiol; 2012 Apr; 107(7):1890-903. PubMed ID: 22236716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Somatosensory input onto pyramidal tract neurons in rodent motor cortex.
    Porter LL
    Neuroreport; 1996 Oct; 7(14):2309-15. PubMed ID: 8951844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronization in monkey motor cortex during a precision grip task. II. effect of oscillatory activity on corticospinal output.
    Baker SN; Pinches EM; Lemon RN
    J Neurophysiol; 2003 Apr; 89(4):1941-53. PubMed ID: 12686573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corticoreticular pathways in the cat. I. Projection patterns and collaterization.
    Kably B; Drew T
    J Neurophysiol; 1998 Jul; 80(1):389-405. PubMed ID: 9658059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evoked responses of pyramidal tract neurons to stimulation of the lateral hypothalamus.
    Astvatsatryan EG; Mkrtchyan AG; Baklavadzhyan OG
    Neurosci Behav Physiol; 1981; 11(5):454-9. PubMed ID: 7346716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topographical localization in the motor cortex of the cat for somatic afferent responses and evoked movements.
    Armstrong DM; Drew T
    J Physiol; 1984 May; 350():33-54. PubMed ID: 6747853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vasopressin in the locus coeruleus and dorsal pontine tegmentum affects posture and vestibulospinal reflexes.
    Pompeiano O
    Prog Brain Res; 1998; 119():537-54. PubMed ID: 10074811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of the ventrolateral thalamus to the locomotion-related activity of motor cortex.
    Beloozerova IN; Marlinski V
    J Neurophysiol; 2020 Nov; 124(5):1480-1504. PubMed ID: 32783584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.