These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 17975264)

  • 1. Comparing genomes with duplications: a computational complexity point of view.
    Blin G; Chauve C; Fertin G; Rizzi R; Vialette S
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(4):523-34. PubMed ID: 17975264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient tools for computing the number of breakpoints and the number of adjacencies between two genomes with duplicate genes.
    Angibaud S; Fertin G; Rusu I; Thévenin A; Vialette S
    J Comput Biol; 2008 Oct; 15(8):1093-115. PubMed ID: 18774903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computing the summed adjacency disruption number between two genomes with duplicate genes.
    Delgado J; Lynce I; Manquinho V
    J Comput Biol; 2010 Sep; 17(9):1243-65. PubMed ID: 20874407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pseudo-boolean framework for computing rearrangement distances between genomes with duplicates.
    Angibaud S; Fertin G; Rusu I; Vialette S
    J Comput Biol; 2007 May; 14(4):379-93. PubMed ID: 17572018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approaching the One-Sided Exemplar Adjacency Number Problem.
    Qingge L; Smith K; Jungst S; Wang B; Yang Q; Zhu B
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):1946-1954. PubMed ID: 31056506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Genome Similarity Measures based on Conserved Gene Adjacencies.
    Doerr D; Kowada LAB; Araujo E; Deshpande S; Dantas S; Moret BME; Stoye J
    J Comput Biol; 2017 Jun; 24(6):616-634. PubMed ID: 28590847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inapproximability of (1,2)-exemplar distance.
    Bulteau L; Jiang M
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(6):1384-90. PubMed ID: 24407297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finding nested common intervals efficiently.
    Blin G; Faye D; Stoye J
    J Comput Biol; 2010 Sep; 17(9):1183-94. PubMed ID: 20874403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On Computing Breakpoint Distances for Genomes with Duplicate Genes.
    Shao M; Moret BME
    J Comput Biol; 2017 Jun; 24(6):571-580. PubMed ID: 27788022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perfect sorting by reversals is not always difficult.
    Bérard S; Bergeron A; Chauve C; Paul C
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(1):4-16. PubMed ID: 17277409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorting permutations by prefix and suffix rearrangements.
    Lintzmayer CN; Fertin G; Dias Z
    J Bioinform Comput Biol; 2017 Feb; 15(1):1750002. PubMed ID: 28201946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Exact Algorithm to Compute the Double-Cut-and-Join Distance for Genomes with Duplicate Genes.
    Shao M; Lin Y; Moret BM
    J Comput Biol; 2015 May; 22(5):425-35. PubMed ID: 25517208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The median problems on linear multichromosomal genomes: graph representation and fast exact solutions.
    Xu AW
    J Comput Biol; 2010 Sep; 17(9):1195-211. PubMed ID: 20874404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorting genomes by translocations and deletions.
    Qi X; Li G; Li S; Xu Y
    Comput Syst Bioinformatics Conf; 2006; ():157-66. PubMed ID: 17369634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Matching algorithms for assigning orthologs after genome duplication events.
    Fertin G; Hüffner F; Komusiewicz C; Sorge M
    Comput Biol Chem; 2018 Jun; 74():379-390. PubMed ID: 29650458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorting by Cuts, Joins, and Whole Chromosome Duplications.
    Zeira R; Shamir R
    J Comput Biol; 2017 Feb; 24(2):127-137. PubMed ID: 27704866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaffold filling under the breakpoint and related distances.
    Jiang H; Zheng C; Sankoff D; Zhu B
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1220-9. PubMed ID: 22529329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple genome rearrangement by reversals.
    Wu S; Gu X
    Pac Symp Biocomput; 2002; ():259-70. PubMed ID: 11928481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A lower bound on the reversal and transposition diameter.
    Meidanis J; Walter MM; Dias Z
    J Comput Biol; 2002; 9(5):743-5. PubMed ID: 12487761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computing the family-free DCJ similarity.
    Rubert DP; Hoshino EA; Braga MDV; Stoye J; Martinez FV
    BMC Bioinformatics; 2018 May; 19(Suppl 6):152. PubMed ID: 29745861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.