These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 17975606)

  • 1. Statistics of random lasing modes in weakly scattering systems.
    Wu X; Cao H
    Opt Lett; 2007 Nov; 32(21):3089-91. PubMed ID: 17975606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral behavior of partially pumped weakly scattering random lasers.
    Andreasen J; Cao H
    Opt Express; 2011 Feb; 19(4):3418-33. PubMed ID: 21369164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random lasing in ballistic and diffusiveregimes for macroporous silica-based systems with tunable scattering strength.
    Meng X; Fujita K; Murai S; Konishi J; Mano M; Tanaka K
    Opt Express; 2010 Jun; 18(12):12153-60. PubMed ID: 20588338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replica symmetry breaking in coherent and incoherent random lasing modes.
    Sarkar A; Bhaktha BNS
    Opt Lett; 2021 Oct; 46(20):5169-5172. PubMed ID: 34653143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replica Symmetry Breaking in a Weakly Scattering Optofluidic Random Laser.
    Sarkar A; Bhaktha BNS; Andreasen J
    Sci Rep; 2020 Feb; 10(1):2628. PubMed ID: 32060490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorption-induced confinement of lasing modes in diffusive random media.
    Yamilov A; Wu X; Cao H; Burin AL
    Opt Lett; 2005 Sep; 30(18):2430-2. PubMed ID: 16196342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Threshold and High Intensity Random Lasing Enhanced by MnCl₂.
    Shang Z; Yang M; Deng L
    Materials (Basel); 2016 Aug; 9(9):. PubMed ID: 28773845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Random Lasing at Localization Transition in a Colloidal Suspension (TiO
    Jiménez-Villar E; da Silva IF; Mestre V; Wetter NU; Lopez C; de Oliveira PC; Faustino WM; de Sá GF
    ACS Omega; 2017 Jun; 2(6):2415-2421. PubMed ID: 31457590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cocrystallization Tailoring Multiple Radiative Decay Pathways for Amplified Spontaneous Emission.
    Bolla G; Liao Q; Amirjalayer S; Tu Z; Lv S; Liu J; Zhang S; Zhen Y; Yi Y; Liu X; Fu H; Fuchs H; Dong H; Wang Z; Hu W
    Angew Chem Int Ed Engl; 2021 Jan; 60(1):281-289. PubMed ID: 32697379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic random lasing in silica aerogel doped with rhodamine 6G.
    Wetter NU; Ramos de Miranda A; Pecoraro É; Lima Ribeiro SJ; Jimenez-Villar E
    RSC Adv; 2018 Aug; 8(52):29678-29685. PubMed ID: 35547269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Pearson correlation coefficient and Parisi parameter of replica symmetry breaking in a hybrid electronically addressable random fiber laser.
    Coronel E; Das A; González IRR; Gomes ASL; Margulis W; von der Weid JP; Raposo EP
    Opt Express; 2021 Jul; 29(15):24422-24433. PubMed ID: 34614688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Red, Yellow, Green, and Blue Amplified Spontaneous Emission and Lasing Using Colloidal CdSe Nanoplatelets.
    She C; Fedin I; Dolzhnikov DS; Dahlberg PD; Engel GS; Schaller RD; Talapin DV
    ACS Nano; 2015 Oct; 9(10):9475-85. PubMed ID: 26302368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Random-lasing-based distributed fiber-optic amplification.
    Jia XH; Rao YJ; Peng F; Wang ZN; Zhang WL; Wu HJ; Jiang Y
    Opt Express; 2013 Mar; 21(5):6572-7. PubMed ID: 23482228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocount statistics of chaotic lasers.
    Hackenbroich G; Viviescas C; Elattari B; Haake F
    Phys Rev Lett; 2001 Jun; 86(23):5262-5. PubMed ID: 11384473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition from amplified spontaneous emission to laser action in strongly scattering media.
    Cao H; Xu JY; Chang S; Ho ST
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):1985-9. PubMed ID: 11046486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influences of position of ytterbium-doped fiber and ASE pump on spectral properties of random fiber laser.
    Chen L; Song R; Lei C; Yang W; He F; Hou J
    Opt Express; 2019 Apr; 27(7):9647-9654. PubMed ID: 31045113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ASE and parasitic lasing in thin disk laser with anti-ASE cap.
    Furuse H; Chosrowjan H; Kawanaka J; Miyanaga N; Fujita M; Izawa Y
    Opt Express; 2013 Jun; 21(11):13118-24. PubMed ID: 23736565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavity-Enhanced Fluorescence in Colliding Droplets of Rhodamine 6G Aqueous Solutions.
    Kamoshita A; Kohno JY
    J Phys Chem A; 2023 Sep; 127(36):7605-7611. PubMed ID: 37552637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanostars for random lasing enhancement.
    Ziegler J; Djiango M; Vidal C; Hrelescu C; Klar TA
    Opt Express; 2015 Jun; 23(12):15152-9. PubMed ID: 26193498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lasing emission from an evaporating layered microdroplet.
    Essien M; Armstrong RL; Gillespie JB
    Opt Lett; 1993 May; 18(10):762-4. PubMed ID: 19802264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.