These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 17975606)

  • 21. Diffusive random laser modes under a spatiotemporal scope.
    García-Revilla S; Fernández J; Barredo-Zuriarrain M; Carlos LD; Pecoraro E; Iparraguirre I; Azkargorta J; Balda R
    Opt Express; 2015 Jan; 23(2):1456-69. PubMed ID: 25835903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Statistical fluctuations of coherent and incoherent intensity in random lasers with nonresonant feedback.
    Uppu R; Mujumdar S
    Opt Lett; 2010 Sep; 35(17):2831-3. PubMed ID: 20808339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Taming random lasers through active spatial control of the pump.
    Bachelard N; Andreasen J; Gigan S; Sebbah P
    Phys Rev Lett; 2012 Jul; 109(3):033903. PubMed ID: 22861853
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic nonlinear effect on lasing in a random medium.
    Liu B; Yamilov A; Ling Y; Xu JY; Cao H
    Phys Rev Lett; 2003 Aug; 91(6):063903. PubMed ID: 12935075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High power C+L-band Erbium ASE source using optical circulator with double-pass and bidirectional pumping configuration.
    Lin H; Chang CH
    Opt Express; 2004 Dec; 12(25):6135-40. PubMed ID: 19488256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Random Lasing Engineering in Poly-(9-9dioctylfluorene) Active Waveguides Deposited on Wrinkles Corrugated Surfaces.
    Anni M; Rhee D; Lee WK
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9385-9393. PubMed ID: 30732449
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmonically enhanced random lasing and weak localization of light in powdered Nd
    Ma X; Zhang J; Wang Y; Lang J; Zhao H
    Opt Express; 2019 Sep; 27(20):28551-28563. PubMed ID: 31684605
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Statistical properties of one-dimensional random lasers.
    Zaitsev O; Deych L; Shuvayev V
    Phys Rev Lett; 2009 Jan; 102(4):043906. PubMed ID: 19257422
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Statistical analysis of random lasing emission properties in nematic liquid crystals.
    Ferjani S; Sorriso-Valvo L; De Luca A; Barna V; De Marco R; Strangi G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011707. PubMed ID: 18763973
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Random lasing emission tailored by femtosecond and picosecond pulsed polymer ablation.
    Consoli A; Soria E; Caselli N; López C
    Opt Lett; 2019 Feb; 44(3):518-521. PubMed ID: 30702668
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Concentration effects on spontaneous and amplified emission in benzo[c]fluorenes.
    Kazlauskas K; Kreiza G; Radiunas E; Adomėnas P; Adomėnienė O; Karpavičius K; Bucevičius J; Jankauskas V; Juršėnas S
    Phys Chem Chem Phys; 2015 May; 17(19):12935-48. PubMed ID: 25912324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Emission regimes of random lasers with spatially localized feedback.
    Consoli A; Lopez C
    Opt Express; 2016 May; 24(10):10912-20. PubMed ID: 27409912
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Random lasing over gap states from a quasi-one-dimensional amplifying periodic-on-average random superlattice.
    Tiwari AK; Mujumdar S
    Phys Rev Lett; 2013 Dec; 111(23):233903. PubMed ID: 24476272
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy transfer and amplified spontaneous emission in temperature-controlled random scattering media.
    Lee IY; Suzuki H
    J Phys Chem B; 2008 Apr; 112(15):4561-70. PubMed ID: 18366214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lasing with resonant feedback in weakly scattering random systems.
    Vanneste C; Sebbah P; Cao H
    Phys Rev Lett; 2007 Apr; 98(14):143902. PubMed ID: 17501275
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low-spatial-coherence high-radiance broadband fiber source for speckle free imaging.
    Redding B; Ahmadi P; Mokan V; Seifert M; Choma MA; Cao H
    Opt Lett; 2015 Oct; 40(20):4607-10. PubMed ID: 26469575
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large fluctuations at the lasing threshold of solid- and liquid-state dye lasers.
    Basak S; Blanco A; López C
    Sci Rep; 2016 Aug; 6():32134. PubMed ID: 27558968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. When does single-mode lasing become a condensation phenomenon?
    Fischer B; Weill R
    Opt Express; 2012 Nov; 20(24):26704-13. PubMed ID: 23187523
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Time-resolved spectroscopy of laser emission from dye-doped droplets.
    Biswas A; Latifi H; Armstrong RL; Pinnick RG
    Opt Lett; 1989 Feb; 14(4):214-6. PubMed ID: 19749873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of the pumping geometry on the half-widths of the lasing peaks observed from Rhodamine 6G ethanol droplets.
    Knight JC; Driver HS; Robertson GN
    Opt Lett; 1990 Sep; 15(17):980-2. PubMed ID: 19770972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.