These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 17975606)

  • 41. Low-threshold lasing from colloidal CdSe/CdSeTe core/alloyed-crown type-II heteronanoplatelets.
    Gao Y; Li M; Delikanli S; Zheng H; Liu B; Dang C; Sum TC; Demir HV
    Nanoscale; 2018 May; 10(20):9466-9475. PubMed ID: 29767210
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Linearly polarized emission from random lasers with anisotropically amplifying media.
    Knitter S; Kues M; Haidl M; Fallnich C
    Opt Express; 2013 Dec; 21(25):31591-603. PubMed ID: 24514732
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Time dependent theory for random lasers.
    Jiang X; Soukoulis CM
    Phys Rev Lett; 2000 Jul; 85(1):70-3. PubMed ID: 10991161
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Time-dependent theory for random lasers in the presence of an inhomogeneous broadened gain medium such as PbSe quantum dots.
    Ardakani AG; Mahdavi SM; Bahrampour AR
    Appl Opt; 2013 Feb; 52(6):1317-24. PubMed ID: 23435005
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Narrow-linewidth, quasi-continuous-wave ASE source based on a multiple-pass Nd:YAG zigzag slab amplifier configuration.
    Chen X; Lu Y; Hu H; Tong L; Zhang L; Yu Y; Wang J; Ren H; Xu L
    Opt Express; 2018 Mar; 26(5):5602-5608. PubMed ID: 29529762
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lasing properties of non-resonant single quantum dot-cavity system under incoherent excitation.
    Guan H; Yao P; Yu W; Wang P; Ming H
    Opt Express; 2012 Dec; 20(27):28437-46. PubMed ID: 23263079
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of amplified spontaneous emission in thin disk lasers using the spectral linewidth.
    Chen Y; Zhu G; Chen H; Wang M; Chen K; Wang H; Aleksei K; Zhu X
    Opt Express; 2019 Apr; 27(9):12110-12125. PubMed ID: 31052756
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Random optical pulse generation with bistable semiconductor ring lasers.
    Sunada S; Harayama T; Arai K; Yoshimura K; Tsuzuki K; Uchida A; Davis P
    Opt Express; 2011 Apr; 19(8):7439-50. PubMed ID: 21503053
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Theory of photon statistics and optical coherence in a multiple-scattering random-laser medium.
    Florescu L; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 2):046603. PubMed ID: 15169114
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simple Approach to Improving the Amplified Spontaneous Emission Properties of Perovskite Films.
    Li J; Si J; Gan L; Liu Y; Ye Z; He H
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):32978-32983. PubMed ID: 27934133
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lasing with well-defined cavity modes in dye-infiltrated silica inverse opals.
    Nishijima Y; Ueno K; Juodkazis S; Mizeikis V; Fujiwara H; Sasaki K; Misawa H
    Opt Express; 2009 Feb; 17(4):2976-83. PubMed ID: 19219202
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photon localization laser: low-threshold lasing in a random amplifying layered medium via wave localization.
    Milner V; Genack AZ
    Phys Rev Lett; 2005 Feb; 94(7):073901. PubMed ID: 15783816
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evanescent-wave-excited quasi-two-dimensional random lasing.
    Mujumdar S; Ramachandran H; Kumar N; Sood AK
    Opt Lett; 2006 Sep; 31(18):2722-4. PubMed ID: 16936870
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Study of solvent effect in laser emission from Coumarin 540 dye solution.
    Nedumpara RJ; Thomas KJ; Jayasree VK; Girijavallabhan CP; Nampoori VP; Radhakrishnan P
    Appl Opt; 2007 Jul; 46(21):4786-92. PubMed ID: 17609728
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Direct three-photon excitation of upconversion random laser emission in a weakly scattering organic colloidal system.
    Gomes AS; Carvalho MT; Dominguez CT; de Araújo CB; Prasad PN
    Opt Express; 2014 Jun; 22(12):14305-10. PubMed ID: 24977528
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spontaneous symmetry breaking in a polariton and photon laser.
    Ohadi H; Kammann E; Liew TC; Lagoudakis KG; Kavokin AV; Lagoudakis PG
    Phys Rev Lett; 2012 Jul; 109(1):016404. PubMed ID: 23031120
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Gain mechanism of femtosecond two-photon-excited lasing effect in atomic hydrogen.
    Ding P; Ruchkina M; Liu Y; Alden M; Bood J
    Opt Lett; 2019 May; 44(9):2374-2377. PubMed ID: 31042226
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mode competition of two bandedge lasing from dye doped cholesteric liquid crystal laser.
    Lin JH; Chen PY; Wu JJ
    Opt Express; 2014 Apr; 22(8):9932-41. PubMed ID: 24787875
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Linear dispersive effect on random lasing modes.
    Liu Y; Liu J; Wang K
    Opt Express; 2011 Jul; 19(14):13445-53. PubMed ID: 21747500
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recurrent scattering of spontaneous radiation from a randomly occupied optical lattice.
    Guo W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036602. PubMed ID: 15089425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.